Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1984 Jun;25(6):710–718. doi: 10.1128/aac.25.6.710

In vitro evaluation of HR810, a new wide-spectrum aminothiazolyl alpha-methoxyimino cephalosporin.

R N Jones, C Thornsberry, A L Barry
PMCID: PMC185628  PMID: 6611135

Abstract

HR810 (Hoechst-Roussel Pharmaceuticals Inc., Somerville, N.J.) is a new, cyclical-pyridinium cephalosporin that appeared superior to numerous comparison drugs against 658 strains of aerobic and facultative anaerobic bacteria. Seventeen Enterobacteriaceae spp. were tested by broth microdilution methods, and the 50% MICs (MIC50S) and 90% MICs (MIC90s) were 0.03 to 0.12 and 0.03 to 2.0 micrograms/ml, respectively. Only one strain had an MIC greater than 8.0 micrograms/ml (99.6% is considered susceptible). HR810 inhibited 98% of Pseudomonas aeruginosa isolates at less than or equal to 16 micrograms/ml, and the MIC90 for Acinetobacter spp. was 4.0 micrograms/ml. It was also very active against Pseudomonas spp. and Staphylococcus aureus (MIC90, 0.5 micrograms/ml) but marginally active against methicillin-resistant staphylococcal strains (MIC90, 16 micrograms/ml) and enterococcus (MIC90, 32 micrograms/ml). Non-enterococcal streptococci had MIC50s ranging from 0.008 micrograms/ml for Streptococcus pyogenes to 0.12 micrograms/ml for pneumococci. All MICs of HR810 against Haemophilus and Neisseria spp. were less than or equal to 0.03 micrograms/ml (MIC50, 0.002 to 0.008 micrograms/ml). HR810 poorly inhibited beta-lactamases and was very stable against 11 tested beta-lactamases of plasmid (TEM, OXA, SHV-1, and PSE) and chromosomal (K1, K14, P99) types.

Full text

PDF
710

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. N., Thornsberry C., Jones R. N. In vitro antimicrobial activity of cefoperazone, cefotaxime, moxalactam (LY127935), azlocillin, mezlocillin, and other beta-lactam antibiotics against Neisseria gonorrhoeae and Haemophilus influenzae, including beta-lactamase-producing strains. Antimicrob Agents Chemother. 1980 Apr;17(4):757–761. doi: 10.1128/aac.17.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauernfeind A. Susceptibility of gram-positive aerobic cocci to the new cephalosporin HR 810. Eur J Clin Microbiol. 1983 Aug;2(4):354–355. doi: 10.1007/BF02019468. [DOI] [PubMed] [Google Scholar]
  3. Brooks G. F., Barriere S. L. Clinical use of the new beta-lactam antimicrobial drugs. Practical considerations for physicians, microbiology laboratories, pharmacists, and formulary committees. Ann Intern Med. 1983 Apr;98(4):530–535. doi: 10.7326/0003-4819-98-4-530. [DOI] [PubMed] [Google Scholar]
  4. Cullmann W., Opferkuch W., Stieglitz M. Relation between beta-lactamase production and antimicrobial activity: comparison of the new compound HR 810 with cefotaxime. Eur J Clin Microbiol. 1983 Aug;2(4):350–352. doi: 10.1007/BF02019466. [DOI] [PubMed] [Google Scholar]
  5. Fu K. P., Neu H. C. Antibacterial activity of ceftizoxime, a beta-lactamase-stable cephalosporin. Antimicrob Agents Chemother. 1980 Apr;17(4):583–590. doi: 10.1128/aac.17.4.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fu K. P., Neu H. C. The comparative beta-lactamase resistance and inhibitory activity of 1-oxa cephalosporin, cefoxitin and cefotaxime. J Antibiot (Tokyo) 1979 Sep;32(9):909–914. doi: 10.7164/antibiotics.32.909. [DOI] [PubMed] [Google Scholar]
  7. Fuchs P. C., Jones R. N., Thornsberry C., Barry A. L., Gerlach E. H., Sommers H. M. Cefmenoxime (SCE-1365), a new cephalosporin: in vitro activity, comparison with other antimicrobial agents, beta-lactamase stability, and disk diffusion testing with tentative interpretive criteria. Antimicrob Agents Chemother. 1981 Dec;20(6):747–759. doi: 10.1128/aac.20.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jones R. N., Barry A. L. Cefoperazone: a review of its antimicrobial spectrum, beta-lactamase stability, enzyme inhibition, and other in vitro characteristics. Rev Infect Dis. 1983 Mar-Apr;5 (Suppl 1):S108–S126. doi: 10.1093/clinids/5.supplement_1.s108. [DOI] [PubMed] [Google Scholar]
  9. Jones R. N., Barry A. L., Thornsberry C., Wilson H. W. In vitro antimicrobial activity evaluation of cefodizime (HR221), a new semisynthetic cephalosporin. Antimicrob Agents Chemother. 1981 Dec;20(6):760–768. doi: 10.1128/aac.20.6.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones R. N., Thornsberry C. Cefotaxime: a review of in vitro antimicrobial properties and spectrum of activity. Rev Infect Dis. 1982 Sep-Oct;4 (Suppl):S300–S315. doi: 10.1093/clinids/4.supplement_2.s300. [DOI] [PubMed] [Google Scholar]
  11. Jones R. N., Wilson H. W. Antimicrobial activity, beta-lactamase stability and beta-lactamase inhibition of cefotetan and other 7-alpha-methoxy beta-lactam antimicrobials. Diagn Microbiol Infect Dis. 1983 Mar;1(1):71–83. doi: 10.1016/0732-8893(83)90035-4. [DOI] [PubMed] [Google Scholar]
  12. Karchmer A. W., Archer G. L., Dismukes W. E. Staphylococcus epidermidis causing prosthetic valve endocarditis: microbiologic and clinical observations as guides to therapy. Ann Intern Med. 1983 Apr;98(4):447–455. doi: 10.7326/0003-4819-98-4-447. [DOI] [PubMed] [Google Scholar]
  13. Machka K., Braveny I. In vitro activity of HR 810, a new broad-spectrum cephalosporin. Eur J Clin Microbiol. 1983 Aug;2(4):345–349. doi: 10.1007/BF02019465. [DOI] [PubMed] [Google Scholar]
  14. Neu H. C. The new beta-lactamase-stable cephalosporins. Ann Intern Med. 1982 Sep;97(3):408–419. doi: 10.7326/0003-4819-97-3-408. [DOI] [PubMed] [Google Scholar]
  15. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richmond M. H., Clark D. C., Wotton S. Indirect method for assessing the penetration of beta-lactamase-nonsusceptible penicillins and cephalosporins in Escherichia coli strains. Antimicrob Agents Chemother. 1976 Aug;10(2):215–218. doi: 10.1128/aac.10.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
  18. Shannon K., King A., Warren C., Phillips I. In vitro antibacterial activity and susceptibility of the cephalosporin Ro 13-9904 to beta-lactamases. Antimicrob Agents Chemother. 1980 Aug;18(2):292–298. doi: 10.1128/aac.18.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sykes R. B., Bonner D. P., Bush K., Georgopapadakou N. H., Wells J. S. Monobactams--monocyclic beta-lactam antibiotics produced by bacteria. J Antimicrob Chemother. 1981 Dec;8 (Suppl E):1–16. doi: 10.1093/jac/8.suppl_e.1. [DOI] [PubMed] [Google Scholar]
  20. Tolxdorff-Neutzling R. M., Wiedemann B. HR 810, a cephalosporin with low affinity for Enterobacter cloacae beta-lactamase. Eur J Clin Microbiol. 1983 Aug;2(4):352–354. doi: 10.1007/BF02019467. [DOI] [PubMed] [Google Scholar]
  21. Watanakunakorn C. Treatment of infections due to methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982 Sep;97(3):376–378. doi: 10.7326/0003-4819-97-3-376. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES