Abstract
Glycoprotein 330 (gp330) is an endocytic receptor expressed in the renal proximal tubules and some other absorptive epithelia, e.g., in the inner ear. The present study shows that the antifibrinolytic polypeptide, aprotinin, and the nephro- and ototoxic antibiotics, aminoglycosides, and polymyxin B compete for binding of 125I-urokinase-plasminogen activator inhibitor type-1 complexes to purified rabbit gp330. Half maximal inhibition was measured at 4 microM for aprotinin, 50 microM for gentamicin, and 0.5 microM for polymyxin B. Drug binding to gp330 was validated by equilibrium dialysis of [3H] gentamicin-gp330 incubations and binding/uptake studies in rat proximal tubules and gp330-expressing L2 carcinoma cells. Analyses of mutant aprotinins expressed in Saccharomyces cerevisiae revealed that basic residues are essential for the binding to gp330 and renal uptake. The polybasic drugs also antagonized ligand binding to the human alpha 2-macroglobulin receptor. However, the rapid glomerular filtration of the drugs suggests kidney gp330 to be the quantitatively most important target. In conclusion, a novel role of gp330 as a drug receptor is demonstrated. The new insight into the mechanism of epithelial uptake of polybasic drugs might provide a basis for future design of drugs with reduced toxicity.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubert-Tulkens G., Van Hoof F., Tulkens P. Gentamicin-induced lysosomal phospholipidosis in cultured rat fibroblasts. Quantitative ultrastructural and biochemical study. Lab Invest. 1979 Apr;40(4):481–491. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brodersen R., Andersen S., Jacobsen C., Sønderskov O., Ebbesen F., Cashore W. J., Larsen S. Determination of reserve albumin-equivalent for ligand binding, probing two distinct binding functions of the protein. Anal Biochem. 1982 Apr;121(2):395–408. doi: 10.1016/0003-2697(82)90499-7. [DOI] [PubMed] [Google Scholar]
- Bysani G. K., Stokes D. C., Fishman M., Shenep J. L., Hildner W. K., Rufus K., Bradham N., Costlow M. E. Binding of polymyxin B to rat alveolar macrophages. J Infect Dis. 1990 Oct;162(4):939–943. doi: 10.1093/infdis/162.4.939. [DOI] [PubMed] [Google Scholar]
- Chappell D. A., Fry G. L., Waknitz M. A., Muhonen L. E., Pladet M. W., Iverius P. H., Strickland D. K. Lipoprotein lipase induces catabolism of normal triglyceride-rich lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor in vitro. A process facilitated by cell-surface proteoglycans. J Biol Chem. 1993 Jul 5;268(19):14168–14175. [PubMed] [Google Scholar]
- Chatelet F., Brianti E., Ronco P., Roland J., Verroust P. Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. II. Extrarenal distribution. Am J Pathol. 1986 Mar;122(3):512–519. [PMC free article] [PubMed] [Google Scholar]
- Christensen E. I., Carone F. A., Rennke H. G. Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells. Lab Invest. 1981 Apr;44(4):351–358. [PubMed] [Google Scholar]
- Christensen E. I., Gliemann J., Moestrup S. K. Renal tubule gp330 is a calcium binding receptor for endocytic uptake of protein. J Histochem Cytochem. 1992 Oct;40(10):1481–1490. doi: 10.1177/40.10.1382088. [DOI] [PubMed] [Google Scholar]
- Christensen E. I., Nielsen S., Moestrup S. K., Borre C., Maunsbach A. B., de Heer E., Ronco P., Hammond T. G., Verroust P. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. Eur J Cell Biol. 1995 Apr;66(4):349–364. [PubMed] [Google Scholar]
- Christensen E. I., Rennke H. G., Carone F. A. Renal tubular uptake of protein: effect of molecular charge. Am J Physiol. 1983 Apr;244(4):F436–F441. doi: 10.1152/ajprenal.1983.244.4.F436. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. The two-disulphide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J Mol Biol. 1975 Jun 25;95(2):167–199. doi: 10.1016/0022-2836(75)90389-7. [DOI] [PubMed] [Google Scholar]
- D'Amico D. J., Libert J., Kenyon K. R., Hanninen L. A., Caspers-Velu L. Retinal toxicity of intravitreal gentamicin. An electron microscopic study. Invest Ophthalmol Vis Sci. 1984 May;25(5):564–572. [PubMed] [Google Scholar]
- Gliemann J., Davidsen O. Characterization of receptors for alpha 2-macroglobulin-trypsin complex in rat hepatocytes. Biochim Biophys Acta. 1986 Jan 23;885(1):49–57. doi: 10.1016/0167-4889(86)90037-6. [DOI] [PubMed] [Google Scholar]
- Hayashida T., Nomura Y., Iwamori M., Nagai Y., Kurata T. Distribution of gentamicin by immunofluorescence in the guinea pig inner ear. Arch Otorhinolaryngol. 1985;242(3):257–264. doi: 10.1007/BF00453548. [DOI] [PubMed] [Google Scholar]
- Houghton D. C., Hartnett M., Campbell-Boswell M., Porter G., Bennett W. A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. Am J Pathol. 1976 Mar;82(3):589–612. [PMC free article] [PubMed] [Google Scholar]
- Humes H. D. Aminoglycoside nephrotoxicity. Kidney Int. 1988 Apr;33(4):900–911. doi: 10.1038/ki.1988.83. [DOI] [PubMed] [Google Scholar]
- Humes H. D., Sastrasinh M., Weinberg J. M. Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity. J Clin Invest. 1984 Jan;73(1):134–147. doi: 10.1172/JCI111184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Just M., Erdmann G., Habermann E. The renal handling of polybasic drugs. 1. Gentamicin and aprotinin in intact animals. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;300(1):57–66. doi: 10.1007/BF00505080. [DOI] [PubMed] [Google Scholar]
- Just M., Habermann E. The renal handling of polybasic drugs. 2. In vitro studies with brush border and lysosomal preparations. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;300(1):67–76. doi: 10.1007/BF00505081. [DOI] [PubMed] [Google Scholar]
- Kanalas J. J., Makker S. P. Identification of the rat Heymann nephritis autoantigen (GP330) as a receptor site for plasminogen. J Biol Chem. 1991 Jun 15;266(17):10825–10829. [PubMed] [Google Scholar]
- Kerjaschki D., Farquhar M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5557–5561. doi: 10.1073/pnas.79.18.5557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kounnas M. Z., Argraves W. S., Strickland D. K. The 39-kDa receptor-associated protein interacts with two members of the low density lipoprotein receptor family, alpha 2-macroglobulin receptor and glycoprotein 330. J Biol Chem. 1992 Oct 15;267(29):21162–21166. [PubMed] [Google Scholar]
- Kounnas M. Z., Haudenschild C. C., Strickland D. K., Argraves W. S. Immunological localization of glycoprotein 330, low density lipoprotein receptor related protein and 39 kDa receptor associated protein in embryonic mouse tissues. In Vivo. 1994 May-Jun;8(3):343–351. [PubMed] [Google Scholar]
- Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. doi: 10.1146/annurev.bi.63.070194.003125. [DOI] [PubMed] [Google Scholar]
- Liao W., Florén C. H. Polymyxin B complexes with and cationizes low density lipoproteins. The cause of polymyxin B-induced enhancement of endocytotic catabolism of low density lipoproteins. Biochem Pharmacol. 1993 May 5;45(9):1835–1843. doi: 10.1016/0006-2952(93)90441-x. [DOI] [PubMed] [Google Scholar]
- Liao W., Florén C. H. Polymyxin B enhances low density lipoprotein catabolism in hepatic and extrahepatic cells. Arterioscler Thromb. 1992 Apr;12(4):503–511. doi: 10.1161/01.atv.12.4.503. [DOI] [PubMed] [Google Scholar]
- Lundgren S., Hjälm G., Hellman P., Ek B., Juhlin C., Rastad J., Klareskog L., Akerström G., Rask L. A protein involved in calcium sensing of the human parathyroid and placental cytotrophoblast cells belongs to the LDL-receptor protein superfamily. Exp Cell Res. 1994 Jun;212(2):344–350. doi: 10.1006/excr.1994.1153. [DOI] [PubMed] [Google Scholar]
- Makker S. P. Analysis of glomeruli-eluted Gp330 autoantibodies and of Gp330 antigen of Heymann nephritis. J Immunol. 1993 Dec 1;151(11):6500–6508. [PubMed] [Google Scholar]
- Makker S. P., Singh A. K. Characterization of the antigen (gp600) of Heymann nephritis. Lab Invest. 1984 Mar;50(3):287–293. [PubMed] [Google Scholar]
- Moestrup S. K., Christensen E. I., Nielsen S., Jørgensen K. E., Bjørn S. E., Røigaard H., Gliemann J. Binding and endocytosis of proteins mediated by epithelial gp330. Ann N Y Acad Sci. 1994 Sep 10;737:124–137. doi: 10.1111/j.1749-6632.1994.tb44306.x. [DOI] [PubMed] [Google Scholar]
- Moestrup S. K., Gliemann J., Pallesen G. Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res. 1992 Sep;269(3):375–382. doi: 10.1007/BF00353892. [DOI] [PubMed] [Google Scholar]
- Moestrup S. K., Holtet T. L., Etzerodt M., Thøgersen H. C., Nykjaer A., Andreasen P. A., Rasmussen H. H., Sottrup-Jensen L., Gliemann J. Alpha 2-macroglobulin-proteinase complexes, plasminogen activator inhibitor type-1-plasminogen activator complexes, and receptor-associated protein bind to a region of the alpha 2-macroglobulin receptor containing a cluster of eight complement-type repeats. J Biol Chem. 1993 Jun 25;268(18):13691–13696. [PubMed] [Google Scholar]
- Moestrup S. K., Kaltoft K., Sottrup-Jensen L., Gliemann J. The human alpha 2-macroglobulin receptor contains high affinity calcium binding sites important for receptor conformation and ligand recognition. J Biol Chem. 1990 Jul 25;265(21):12623–12628. [PubMed] [Google Scholar]
- Moestrup S. K., Nielsen S., Andreasen P., Jørgensen K. E., Nykjaer A., Røigaard H., Gliemann J., Christensen E. I. Epithelial glycoprotein-330 mediates endocytosis of plasminogen activator-plasminogen activator inhibitor type-1 complexes. J Biol Chem. 1993 Aug 5;268(22):16564–16570. [PubMed] [Google Scholar]
- Moestrup S. K. The alpha 2-macroglobulin receptor and epithelial glycoprotein-330: two giant receptors mediating endocytosis of multiple ligands. Biochim Biophys Acta. 1994 Jun 29;1197(2):197–213. doi: 10.1016/0304-4157(94)90005-1. [DOI] [PubMed] [Google Scholar]
- Molitoris B. A., Meyer C., Dahl R., Geerdes A. Mechanism of ischemia-enhanced aminoglycoside binding and uptake by proximal tubule cells. Am J Physiol. 1993 May;264(5 Pt 2):F907–F916. doi: 10.1152/ajprenal.1993.264.5.F907. [DOI] [PubMed] [Google Scholar]
- Morin J. P., Viotte G., Vandewalle A., Van Hoof F., Tulkens P., Fillastre J. P. Gentamicin-induced nephrotoxicity: a cell biology approach. Kidney Int. 1980 Nov;18(5):583–590. doi: 10.1038/ki.1980.176. [DOI] [PubMed] [Google Scholar]
- Norris K., Norris F., Bjørn S. E., Diers I., Peterson L. C. Aprotinin and aprotinin analogues expressed in yeast. Biol Chem Hoppe Seyler. 1990 May;371 (Suppl):37–42. [PubMed] [Google Scholar]
- Nykjaer A., Bengtsson-Olivecrona G., Lookene A., Moestrup S. K., Petersen C. M., Weber W., Beisiegel U., Gliemann J. The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem. 1993 Jul 15;268(20):15048–15055. [PubMed] [Google Scholar]
- Nykjaer A., Petersen C. M., Møller B., Jensen P. H., Moestrup S. K., Holtet T. L., Etzerodt M., Thøgersen H. C., Munch M., Andreasen P. A. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem. 1992 Jul 25;267(21):14543–14546. [PubMed] [Google Scholar]
- Orlando R. A., Farquhar M. G. Identification of a cell line that expresses a cell surface and a soluble form of the gp330/receptor-associated protein (RAP) Heymann nephritis antigenic complex. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4082–4086. doi: 10.1073/pnas.90.9.4082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlando R. A., Kerjaschki D., Kurihara H., Biemesderfer D., Farquhar M. G. gp330 associates with a 44-kDa protein in the rat kidney to form the Heymann nephritis antigenic complex. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6698–6702. doi: 10.1073/pnas.89.15.6698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raychowdhury R., Niles J. L., McCluskey R. T., Smith J. A. Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science. 1989 Jun 9;244(4909):1163–1165. doi: 10.1126/science.2786251. [DOI] [PubMed] [Google Scholar]
- Saito A., Pietromonaco S., Loo A. K., Farquhar M. G. Complete cloning and sequencing of rat gp330/"megalin," a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9725–9729. doi: 10.1073/pnas.91.21.9725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sastrasinh M., Knauss T. C., Weinberg J. M., Humes H. D. Identification of the aminoglycoside binding site in rat renal brush border membranes. J Pharmacol Exp Ther. 1982 Aug;222(2):350–358. [PubMed] [Google Scholar]
- Tran Ba Huy P., Bernard P., Schacht J. Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. J Clin Invest. 1986 May;77(5):1492–1500. doi: 10.1172/JCI112463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Leuven F., Cassiman J. J., Van Den Berghe H. Demonstration of an alpha2-macroglobulin receptor in human fibroblasts, absent in tumor-derived cell lines. J Biol Chem. 1979 Jun 25;254(12):5155–5160. [PubMed] [Google Scholar]
- Warshawsky I., Broze G. J., Jr, Schwartz A. L. The low density lipoprotein receptor-related protein mediates the cellular degradation of tissue factor pathway inhibitor. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6664–6668. doi: 10.1073/pnas.91.14.6664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wedeen R. P., Batuman V., Cheeks C., Marquet E., Sobel H. Transport of gentamicin in rat proximal tubule. Lab Invest. 1983 Feb;48(2):212–223. [PubMed] [Google Scholar]
- Wedeen R. P., Batuman V., Cheeks C., Marquet E., Sobel H. Transport of gentamicin in rat proximal tubule. Lab Invest. 1983 Feb;48(2):212–223. [PubMed] [Google Scholar]
- Williams S. E., Ashcom J. D., Argraves W. S., Strickland D. K. A novel mechanism for controlling the activity of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J Biol Chem. 1992 May 5;267(13):9035–9040. [PubMed] [Google Scholar]
- Willnow T. E., Goldstein J. L., Orth K., Brown M. S., Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992 Dec 25;267(36):26172–26180. [PubMed] [Google Scholar]
- Willnow T. E., Orth K., Herz J. Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related protein. J Biol Chem. 1994 Jun 3;269(22):15827–15832. [PubMed] [Google Scholar]
- Zheng G., Bachinsky D. R., Stamenkovic I., Strickland D. K., Brown D., Andres G., McCluskey R. T. Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpha 2MR, and the receptor-associated protein (RAP). J Histochem Cytochem. 1994 Apr;42(4):531–542. doi: 10.1177/42.4.7510321. [DOI] [PubMed] [Google Scholar]
- de Groot J. C., Meeuwsen F., Ruizendaal W. E., Veldman J. E. Ultrastructural localization of gentamicin in the cochlea. Hear Res. 1990 Dec;50(1-2):35–42. doi: 10.1016/0378-5955(90)90031-j. [DOI] [PubMed] [Google Scholar]