Abstract
Hemodynamic factors have profound influences on blood vessels. To test the hypothesis that hemodynamic conditions modify the pattern of remodeling in response to injury, monocrotaline (MCT) injury in Sprague-Dawley rats was followed 1 week later by left pneumonectomy to increase blood flow to the right lung. Right pulmonary artery remodeling in these MCT plus pneumonectomy animals was compared with animals receiving MCT or pneumonectomy alone. Neointimal changes developed in more than 90% of all right lung intra-acinar vessels 5 weeks after MCT injury (4 weeks after pneumonectomy). Neointimal lesions did not develop in untreated animals or in animals receiving MCT or pneumonectomy only. Animals with a neointimal pattern of remodeling developed severe right ventricular hypertrophy (RVH) whereas animals with a medial hypertrophy pattern of remodeling (MCT only) developed moderate RVH compared with control animals. Neointimal lesions and RVH were similar whether injury preceded pneumonectomy or vice versa. To exclude the possibility that neointimal lesions resulted from injury plus post-pneumonectomy compensatory lung growth, rather than injury plus increased flow, a left subclavian-pulmonary artery anastomosis was substituted for pneumonectomy. Neointimal lesions and severe RVH developed in these animals but were not seen in animals receiving either MCT or anastomosis only. These studies demonstrate an important role for hemodynamics in determining the pattern of pulmonary vascular remodeling after injury.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURROWS B., HARRISON R. W., ADAMS W. E., HUMPHREYS E. M., LONG E. T., REIMANN A. F. The postpneumonectomy state: clinical and physiologic observations in thirty-six cases. Am J Med. 1960 Feb;28:281–297. doi: 10.1016/0002-9343(60)90190-x. [DOI] [PubMed] [Google Scholar]
- Bahadori L., Milder J., Gold L., Botney M. Active macrophage-associated TGF-beta co-localizes with type I procollagen gene expression in atherosclerotic human pulmonary arteries. Am J Pathol. 1995 May;146(5):1140–1149. [PMC free article] [PubMed] [Google Scholar]
- Besterman E. ATRIAL SEPTAL DEFECT WITH PULMONARY HYPERTENSION. Br Heart J. 1961 Sep;23(5):587–598. doi: 10.1136/hrt.23.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjornsson J., Edwards W. D. Primary pulmonary hypertension: a histopathologic study of 80 cases. Mayo Clin Proc. 1985 Jan;60(1):16–25. doi: 10.1016/s0025-6196(12)65277-x. [DOI] [PubMed] [Google Scholar]
- Botney M. D., Bahadori L., Gold L. I. Vascular remodeling in primary pulmonary hypertension. Potential role for transforming growth factor-beta. Am J Pathol. 1994 Feb;144(2):286–295. [PMC free article] [PubMed] [Google Scholar]
- Botney M. D., Kaiser L. R., Cooper J. D., Mecham R. P., Parghi D., Roby J., Parks W. C. Extracellular matrix protein gene expression in atherosclerotic hypertensive pulmonary arteries. Am J Pathol. 1992 Feb;140(2):357–364. [PMC free article] [PubMed] [Google Scholar]
- Botney M. D., Liptay M. J., Kaiser L. R., Cooper J. D., Parks W. C., Mecham R. P. Active collagen synthesis by pulmonary arteries in human primary pulmonary hypertension. Am J Pathol. 1993 Jul;143(1):121–129. [PMC free article] [PubMed] [Google Scholar]
- Botney M. D., Parks W. C., Crouch E. C., Stenmark K., Mecham R. P. Transforming growth factor-beta 1 is decreased in remodeling hypertensive bovine pulmonary arteries. J Clin Invest. 1992 May;89(5):1629–1635. doi: 10.1172/JCI115759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COURNAND A., RILEY R. L. Pulmonary circulation and alveolar ventilation perfusion relationships after pneumonectomy. J Thorac Surg. 1950 Jan;19(1):80–116. [PubMed] [Google Scholar]
- Davies P., McBride J., Murray G. F., Wilcox B. R., Shallal J. A., Reid L. Structural changes in the canine lung and pulmonary arteries after pneumonectomy. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):859–864. doi: 10.1152/jappl.1982.53.4.859. [DOI] [PubMed] [Google Scholar]
- Giaid A., Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214–221. doi: 10.1056/NEJM199507273330403. [DOI] [PubMed] [Google Scholar]
- Giaid A., Yanagisawa M., Langleben D., Michel R. P., Levy R., Shennib H., Kimura S., Masaki T., Duguid W. P., Stewart D. J. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993 Jun 17;328(24):1732–1739. doi: 10.1056/NEJM199306173282402. [DOI] [PubMed] [Google Scholar]
- Gibbons G. H., Dzau V. J. The emerging concept of vascular remodeling. N Engl J Med. 1994 May 19;330(20):1431–1438. doi: 10.1056/NEJM199405193302008. [DOI] [PubMed] [Google Scholar]
- Glagov S., Ozoa A. K. Significance of the relatively low incidence of atherosclerosis in the pulmonary, renal, and mesenteric arteries. Ann N Y Acad Sci. 1968 Nov 21;149(2):940–955. doi: 10.1111/j.1749-6632.1968.tb53848.x. [DOI] [PubMed] [Google Scholar]
- HEATH D., WOOD E. H., DUSHANE J. W., EDWARDS J. E. The relation of age and blood pressure to atheroma in the pulmonary arteries and thoracic aorta in congenital heart disease. Lab Invest. 1960 Mar-Apr;9:259–272. [PubMed] [Google Scholar]
- Hayashi Y., Hussa J. F., Lalich J. J. Cor pulmonale in rats. Lab Invest. 1967 Jun;16(6):875–881. [PubMed] [Google Scholar]
- Holmes C., Thurlbeck W. M. Normal lung growth and response after pneumonectomy in rats at various ages. Am Rev Respir Dis. 1979 Nov;120(5):1125–1136. doi: 10.1164/arrd.1979.120.5.1125. [DOI] [PubMed] [Google Scholar]
- John Sutton M. G., Tajik A. J., McGoon D. C. Atrial septal defect in patients ages 60 years or older: operative results and long-term postoperative follow-up. Circulation. 1981 Aug;64(2):402–409. doi: 10.1161/01.cir.64.2.402. [DOI] [PubMed] [Google Scholar]
- Kameji R., Otsuka H., Hayashi Y. Increase of collagen synthesis in pulmonary arteries of monocrotaline-treated rats. Experientia. 1980 Apr 15;36(4):441–442. doi: 10.1007/BF01975136. [DOI] [PubMed] [Google Scholar]
- Koh D. W., Roby J. D., Starcher B., Senior R. M., Pierce R. A. Postpneumonectomy lung growth: a model of reinitiation of tropoelastin and type I collagen production in a normal pattern in adult rat lung. Am J Respir Cell Mol Biol. 1996 Nov;15(5):611–623. doi: 10.1165/ajrcmb.15.5.8918368. [DOI] [PubMed] [Google Scholar]
- Lan Q., Mercurius K. O., Davies P. F. Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun. 1994 Jun 15;201(2):950–956. doi: 10.1006/bbrc.1994.1794. [DOI] [PubMed] [Google Scholar]
- Liptay M. J., Parks W. C., Mecham R. P., Roby J., Kaiser L. R., Cooper J. D., Botney M. D. Neointimal macrophages colocalize with extracellular matrix gene expression in human atherosclerotic pulmonary arteries. J Clin Invest. 1993 Feb;91(2):588–594. doi: 10.1172/JCI116238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malek A., Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol. 1992 Aug;263(2 Pt 1):C389–C396. doi: 10.1152/ajpcell.1992.263.2.C389. [DOI] [PubMed] [Google Scholar]
- Mizuta T., Kawaguchi A., Nakahara K., Kawashima Y. Simplified rat lung transplantation using a cuff technique. J Thorac Cardiovasc Surg. 1989 Apr;97(4):578–581. [PubMed] [Google Scholar]
- Ohno M., Cooke J. P., Dzau V. J., Gibbons G. H. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest. 1995 Mar;95(3):1363–1369. doi: 10.1172/JCI117787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkett E. A., Brigham K. L., Meyrick B. Continuous air embolization into sheep causes sustained pulmonary hypertension and increased pulmonary vasoreactivity. Am J Pathol. 1988 Sep;132(3):444–454. [PMC free article] [PubMed] [Google Scholar]
- Pietra G. G., Edwards W. D., Kay J. M., Rich S., Kernis J., Schloo B., Ayres S. M., Bergofsky E. H., Brundage B. H., Detre K. M. Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. Circulation. 1989 Nov;80(5):1198–1206. doi: 10.1161/01.cir.80.5.1198. [DOI] [PubMed] [Google Scholar]
- Poiani G. J., Tozzi C. A., Yohn S. E., Pierce R. A., Belsky S. A., Berg R. A., Yu S. Y., Deak S. B., Riley D. J. Collagen and elastin metabolism in hypertensive pulmonary arteries of rats. Circ Res. 1990 Apr;66(4):968–978. doi: 10.1161/01.res.66.4.968. [DOI] [PubMed] [Google Scholar]
- Prosser I. W., Stenmark K. R., Suthar M., Crouch E. C., Mecham R. P., Parks W. C. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am J Pathol. 1989 Dec;135(6):1073–1088. [PMC free article] [PubMed] [Google Scholar]
- RUDOLPH A. M., NEUHAUSER E. B., GOLINKO R. J., AULD P. A. Effects of pneumonectomy on pulmonary circulation in adult and young animals. Circ Res. 1961 Jul;9:856–861. doi: 10.1161/01.res.9.4.856. [DOI] [PubMed] [Google Scholar]
- Ranjan V., Diamond S. L. Fluid shear stress induces synthesis and nuclear localization of c-fos in cultured human endothelial cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):79–84. doi: 10.1006/bbrc.1993.2218. [DOI] [PubMed] [Google Scholar]
- Rannels D. E., White D. M., Watkins C. A. Rapidity of compensatory lung growth following pneumonectomy in adult rats. J Appl Physiol Respir Environ Exerc Physiol. 1979 Feb;46(2):326–333. doi: 10.1152/jappl.1979.46.2.326. [DOI] [PubMed] [Google Scholar]
- Resnick N., Collins T., Atkinson W., Bonthron D. T., Dewey C. F., Jr, Gimbron M. A., Jr Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7908–7908. doi: 10.1073/pnas.90.16.7908-d. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry. Am J Pathol. 1993 Oct;143(4):987–1002. [PMC free article] [PubMed] [Google Scholar]
- SCHOENTAL R., HEAD M. A. Pathological changes in rats as a result of treatment with monocrotaline. Br J Cancer. 1955 Mar;9(1):229–237. doi: 10.1038/bjc.1955.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster D. P., Crouch E. C., Parks W. C., Johnson T., Botney M. D. Angiotensin converting enzyme expression in primary pulmonary hypertension. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):1087–1091. doi: 10.1164/ajrccm.154.4.8887612. [DOI] [PubMed] [Google Scholar]
- Shen J., Luscinskas F. W., Connolly A., Dewey C. F., Jr, Gimbrone M. A., Jr Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C384–C390. doi: 10.1152/ajpcell.1992.262.2.C384. [DOI] [PubMed] [Google Scholar]
- Stenmark K. R., Morganroth M. L., Remigio L. K., Voelkel N. F., Murphy R. C., Henson P. M., Mathias M. M., Reeves J. T. Alveolar inflammation and arachidonate metabolism in monocrotaline-induced pulmonary hypertension. Am J Physiol. 1985 Jun;248(6 Pt 2):H859–H866. doi: 10.1152/ajpheart.1985.248.6.H859. [DOI] [PubMed] [Google Scholar]
- Sugita T., Stenmark K. R., Wagner W. W., Jr, Henson P. M., Henson J. E., Hyers T. M., Reeves J. T. Abnormal alveolar cells in monocrotaline induced pulmonary hypertension. Exp Lung Res. 1983 Nov;5(3):201–215. doi: 10.3109/01902148309061515. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Berk B. C. Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J Clin Invest. 1996 Dec 1;98(11):2623–2631. doi: 10.1172/JCI119083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka Y., Bernstein M. L., Mecham R. P., Patterson G. A., Cooper J. D., Botney M. D. Site-specific responses to monocrotaline-induced vascular injury: evidence for two distinct mechanisms of remodeling. Am J Respir Cell Mol Biol. 1996 Sep;15(3):390–397. doi: 10.1165/ajrcmb.15.3.8810644. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Schuster D. P., Davis E. C., Patterson G. A., Botney M. D. The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest. 1996 Jul 15;98(2):434–442. doi: 10.1172/JCI118809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todorovich-Hunter L., Johnson D. J., Ranger P., Keeley F. W., Rabinovitch M. Altered elastin and collagen synthesis associated with progressive pulmonary hypertension induced by monocrotaline. A biochemical and ultrastructural study. Lab Invest. 1988 Feb;58(2):184–195. [PubMed] [Google Scholar]
- Tseng H., Peterson T. E., Berk B. C. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res. 1995 Nov;77(5):869–878. doi: 10.1161/01.res.77.5.869. [DOI] [PubMed] [Google Scholar]
- Tuder R. M., Flook B. E., Voelkel N. F. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest. 1995 Apr;95(4):1798–1807. doi: 10.1172/JCI117858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uematsu M., Ohara Y., Navas J. P., Nishida K., Murphy T. J., Alexander R. W., Nerem R. M., Harrison D. G. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995 Dec;269(6 Pt 1):C1371–C1378. doi: 10.1152/ajpcell.1995.269.6.C1371. [DOI] [PubMed] [Google Scholar]
- Wilson D. W., Segall H. J., Pan L. C., Dunston S. K. Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats. Microvasc Res. 1989 Jul;38(1):57–80. doi: 10.1016/0026-2862(89)90017-4. [DOI] [PubMed] [Google Scholar]