Abstract
The viable motheaten mutant mouse is severely immunodeficient and dies from a naturally occurring progressive pulmonary inflammation at approximately 10 weeks of age. The pulmonary disease is characterized by excessive macrophage accumulation in the lung and fibrosis. We correlated the development of lung injury in viable motheaten mice with tumor necrosis factor-alpha (TNF-alpha) levels in serum and lung. Significantly increased serum TNF-alpha levels were observed by enzyme-linked immunosorbent assay in viable motheaten mice at 4, 6, and 10 weeks of age as compared with normal control littermate mice. These ages correlated well with observed changes in lung wet weights, lung collagen content, and histological evidence of pulmonary inflammation and fibrosis. Qualitative assessment of lung tissue TNF-alpha levels was performed by immunohistochemical staining using immunoperoxidase techniques. These studies revealed increased levels of TNF-alpha in macrophage-like cells in viable motheaten mice from 5 to 10 weeks of age as compared with littermate control animals. Alveolar macrophages isolated from viable motheaten mice produced significantly greater amounts of TNF-alpha when stimulated with lipopolysaccharide compared with alveolar macrophages from control animals. In addition, administration of anti-TNF-alpha antibody to motheaten bone marrow recipient mice decreased the severity of acute lung injury. The results demonstrate a close correlation between the development of pulmonary injury and TNF-alpha levels in this model of spontaneously developing fibrotic lung disease.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi M., Fischer E. H., Ihle J., Imai K., Jirik F., Neel B., Pawson T., Shen S., Thomas M., Ullrich A. Mammalian SH2-containing protein tyrosine phosphatases. Cell. 1996 Apr 5;85(1):15–15. doi: 10.1016/s0092-8674(00)81077-6. [DOI] [PubMed] [Google Scholar]
- Bachwich P. R., Lynch J. P., 3rd, Larrick J., Spengler M., Kunkel S. L. Tumor necrosis factor production by human sarcoid alveolar macrophages. Am J Pathol. 1986 Dec;125(3):421–425. [PMC free article] [PubMed] [Google Scholar]
- Barber S. A., Perera P. Y., McNally R., Vogel S. N. The serine/threonine phosphatase inhibitor, calyculin A, inhibits and dissociates macrophage responses to lipopolysaccharide. J Immunol. 1995 Aug 1;155(3):1404–1410. [PubMed] [Google Scholar]
- Beutler B., Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med. 1987 Feb 12;316(7):379–385. doi: 10.1056/NEJM198702123160705. [DOI] [PubMed] [Google Scholar]
- Bissonnette E., Rola-Pleszczynski M. Pulmonary inflammation and fibrosis in a murine model of asbestosis and silicosis. Possible role of tumor necrosis factor. Inflammation. 1989 Jun;13(3):329–339. doi: 10.1007/BF00914399. [DOI] [PubMed] [Google Scholar]
- Callaghan M. M., Lovis R. M., Rammohan C., Lu Y., Pope R. M. Autocrine regulation of collagenase gene expression by TNF-alpha in U937 cells. J Leukoc Biol. 1996 Jan;59(1):125–132. doi: 10.1002/jlb.59.1.125. [DOI] [PubMed] [Google Scholar]
- Chen H. E., Chang S., Trub T., Neel B. G. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1996 Jul;16(7):3685–3697. doi: 10.1128/mcb.16.7.3685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou D. H., Lee W., McCulloch C. A. TNF-alpha inactivation of collagen receptors: implications for fibroblast function and fibrosis. J Immunol. 1996 Jun 1;156(11):4354–4362. [PubMed] [Google Scholar]
- Clark E. A., Shultz L. D., Pollack S. B. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics. 1981 Mar 1;12(5-6):601–613. doi: 10.1007/BF01561700. [DOI] [PubMed] [Google Scholar]
- Crystal R. G., Fulmer J. D., Roberts W. C., Moss M. L., Line B. R., Reynolds H. Y. Idiopathic pulmonary fibrosis. Clinical, histologic, radiographic, physiologic, scintigraphic, cytologic, and biochemical aspects. Ann Intern Med. 1976 Dec;85(6):769–788. doi: 10.7326/0003-4819-85-6-769. [DOI] [PubMed] [Google Scholar]
- Davidson W. F., Morse H. C., 3rd, Sharrow S. O., Chused T. M. Phenotypic and functional effects of the motheaten gene on murine B and T lymphocytes. J Immunol. 1979 Mar;122(3):884–891. [PubMed] [Google Scholar]
- Eilers R. J. Notification of final adoption of an international method and standard solution for hemoglobinometry specifications for preparation of standard solution. Am J Clin Pathol. 1967 Feb;47(2):212–214. doi: 10.1093/ajcp/47.2.212. [DOI] [PubMed] [Google Scholar]
- Elias J. A., Freundlich B., Kern J. A., Rosenbloom J. Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest. 1990 Jun;97(6):1439–1445. doi: 10.1378/chest.97.6.1439. [DOI] [PubMed] [Google Scholar]
- Evans R., Kamdar S. J., Duffy T. M., Fuller J. Synergistic interaction of bacterial lipopolysaccharide and the monocyte-macrophage colony-stimulating factor: potential quantitative and qualitative changes in macrophage-produced cytokine bioactivity. J Leukoc Biol. 1992 Jan;51(1):93–96. doi: 10.1002/jlb.51.1.93. [DOI] [PubMed] [Google Scholar]
- Geppert T. D., Whitehurst C. E., Thompson P., Beutler B. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med. 1994 Nov;1(1):93–103. [PMC free article] [PubMed] [Google Scholar]
- Holler E., Kolb H. J., Möller A., Kempeni J., Liesenfeld S., Pechumer H., Lehmacher W., Ruckdeschel G., Gleixner B., Riedner C. Increased serum levels of tumor necrosis factor alpha precede major complications of bone marrow transplantation. Blood. 1990 Feb 15;75(4):1011–1016. [PubMed] [Google Scholar]
- Jiao H., Yang W., Berrada K., Tabrizi M., Shultz L., Yi T. Macrophages from motheaten and viable motheaten mutant mice show increased proliferative responses to GM-CSF: detection of potential HCP substrates in GM-CSF signal transduction. Exp Hematol. 1997 Jul;25(7):592–600. [PubMed] [Google Scholar]
- Kawakami M., Cerami A. Studies of endotoxin-induced decrease in lipoprotein lipase activity. J Exp Med. 1981 Sep 1;154(3):631–639. doi: 10.1084/jem.154.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitagawa S., Yuo A., Yagisawa M., Azuma E., Yoshida M., Furukawa Y., Takahashi M., Masuyama J., Takaku F. Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release. Exp Hematol. 1996 Mar;24(4):559–567. [PubMed] [Google Scholar]
- Koff A., Ohtsuki M., Polyak K., Roberts J. M., Massagué J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science. 1993 Apr 23;260(5107):536–539. doi: 10.1126/science.8475385. [DOI] [PubMed] [Google Scholar]
- Koo G. C., Manyak C. L., Dasch J., Ellingsworth L., Shultz L. D. Suppressive effects of monocytic cells and transforming growth factor-beta on natural killer cell differentiation in autoimmune viable motheaten mutant mice. J Immunol. 1991 Aug 15;147(4):1194–1200. [PubMed] [Google Scholar]
- Kozlowski M., Mlinaric-Rascan I., Feng G. S., Shen R., Pawson T., Siminovitch K. A. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med. 1993 Dec 1;178(6):2157–2163. doi: 10.1084/jem.178.6.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews R. J., Bowne D. B., Flores E., Thomas M. L. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol. 1992 May;12(5):2396–2405. doi: 10.1128/mcb.12.5.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michie H. R., Manogue K. R., Spriggs D. R., Revhaug A., O'Dwyer S., Dinarello C. A., Cerami A., Wolff S. M., Wilmore D. W. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med. 1988 Jun 9;318(23):1481–1486. doi: 10.1056/NEJM198806093182301. [DOI] [PubMed] [Google Scholar]
- Millar A. B., Foley N. M., Singer M., Johnson N. M., Meager A., Rook G. A. Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet. 1989 Sep 23;2(8665):712–714. doi: 10.1016/s0140-6736(89)90772-1. [DOI] [PubMed] [Google Scholar]
- Miyazaki Y., Tashiro T., Higuchi Y., Setoguchi M., Yamamoto S., Nagai H., Nasu M., Vassalli P. Expression of osteopontin in a macrophage cell line and in transgenic mice with pulmonary fibrosis resulting from the lung expression of a tumor necrosis factor-alpha transgene. Ann N Y Acad Sci. 1995 Apr 21;760:334–341. doi: 10.1111/j.1749-6632.1995.tb44651.x. [DOI] [PubMed] [Google Scholar]
- Niwa Y., Ozaki Y., Kanoh T., Akamatsu H., Kurisaka M. Role of cytokines, tyrosine kinase, and protein kinase C on production of superoxide and induction of scavenging enzymes in human leukocytes. Clin Immunol Immunopathol. 1996 Jun;79(3):303–313. doi: 10.1006/clin.1996.0083. [DOI] [PubMed] [Google Scholar]
- Piguet P. F., Collart M. A., Grau G. E., Kapanci Y., Vassalli P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med. 1989 Sep 1;170(3):655–663. doi: 10.1084/jem.170.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piguet P. F., Collart M. A., Grau G. E., Sappino A. P., Vassalli P. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature. 1990 Mar 15;344(6263):245–247. doi: 10.1038/344245a0. [DOI] [PubMed] [Google Scholar]
- Piguet P. F., Vesin C. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J. 1994 Mar;7(3):515–518. doi: 10.1183/09031936.94.07030515. [DOI] [PubMed] [Google Scholar]
- Plutzky J., Neel B. G., Rosenberg R. D., Eddy R. L., Byers M. G., Jani-Sait S., Shows T. B. Chromosomal localization of an SH2-containing tyrosine phosphatase (PTPN6). Genomics. 1992 Jul;13(3):869–872. doi: 10.1016/0888-7543(92)90172-o. [DOI] [PubMed] [Google Scholar]
- Plutzky J., Neel B. G., Rosenberg R. D. Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1123–1127. doi: 10.1073/pnas.89.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi G. A., Hunninghake G. W., Kawanami O., Ferrans V. J., Hansen C. T., Crystal R. G. Motheaten mice--an animal model with an inherited form of interstitial lung disease. Am Rev Respir Dis. 1985 Jan;131(1):150–158. doi: 10.1164/arrd.1985.131.1.150. [DOI] [PubMed] [Google Scholar]
- Schollmeier K. Immunologic and pathophysiologic role of tumor necrosis factor. Am J Respir Cell Mol Biol. 1990 Jul;3(1):11–12. doi: 10.1165/ajrcmb/3.1.11. [DOI] [PubMed] [Google Scholar]
- Shen S. H., Bastien L., Posner B. I., Chrétien P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature. 1991 Aug 22;352(6337):736–739. doi: 10.1038/352736a0. [DOI] [PubMed] [Google Scholar]
- Shultz L. D., Bailey C. L., Coman D. R. Hematopoietic stem cell function in motheaten mice. Exp Hematol. 1983 Aug;11(7):667–680. [PubMed] [Google Scholar]
- Shultz L. D., Coman D. R., Bailey C. L., Beamer W. G., Sidman C. L. "Viable motheaten," a new allele at the motheaten locus. I. Pathology. Am J Pathol. 1984 Aug;116(2):179–192. [PMC free article] [PubMed] [Google Scholar]
- Shultz L. D., Green M. C. Motheaten, an immunodeficient mutant of the mouse. II. Depressed immune competence and elevated serum immunoglobulins. J Immunol. 1976 Apr;116(4):936–943. [PubMed] [Google Scholar]
- Shultz L. D., Schweitzer P. A., Rajan T. V., Yi T., Ihle J. N., Matthews R. J., Thomas M. L., Beier D. R. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell. 1993 Jul 2;73(7):1445–1454. doi: 10.1016/0092-8674(93)90369-2. [DOI] [PubMed] [Google Scholar]
- Sidman C. L., Shultz L. D., Unanue E. R. The mouse mutant "motheaten." II. Functional studies of the immune system. J Immunol. 1978 Dec;121(6):2399–2404. [PubMed] [Google Scholar]
- Spencer H. Interstitial pneumonia. Annu Rev Med. 1967;18:423–442. doi: 10.1146/annurev.me.18.020167.002231. [DOI] [PubMed] [Google Scholar]
- Sung S. J., Walters J. A., Fu S. M. Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A. J Exp Med. 1992 Sep 1;176(3):897–901. doi: 10.1084/jem.176.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takashima T., Ueta C., Tsuyuguchi I., Kishimoto S. Production of tumor necrosis factor alpha by monocytes from patients with pulmonary tuberculosis. Infect Immun. 1990 Oct;58(10):3286–3292. doi: 10.1128/iai.58.10.3286-3292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thrall R. S., Barton R. W., D'Amato D. A., Sulavik S. B. Differential cellular analysis of bronchoalveolar lavage fluid obtained at various stages during the development of bleomycin-induced pulmonary fibrosis in the rat. Am Rev Respir Dis. 1982 Sep;126(3):488–492. doi: 10.1164/arrd.1982.126.3.488. [DOI] [PubMed] [Google Scholar]
- Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., 3rd, Zentella A., Albert J. D. Shock and tissue injury induced by recombinant human cachectin. Science. 1986 Oct 24;234(4775):470–474. doi: 10.1126/science.3764421. [DOI] [PubMed] [Google Scholar]
- Tracey K. J., Lowry S. F., Cerami A. Cachetin/TNF-alpha in septic shock and septic adult respiratory distress syndrome. Am Rev Respir Dis. 1988 Dec;138(6):1377–1379. doi: 10.1164/ajrccm/138.6.1377. [DOI] [PubMed] [Google Scholar]
- WOESSNER J. F., Jr The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961 May;93:440–447. doi: 10.1016/0003-9861(61)90291-0. [DOI] [PubMed] [Google Scholar]
- Ward J. M. Pulmonary pathology of the motheaten mouse. Vet Pathol. 1978 Mar;15(2):170–178. doi: 10.1177/030098587801500203. [DOI] [PubMed] [Google Scholar]
- Yi T., Cleveland J. L., Ihle J. N. Identification of novel protein tyrosine phosphatases of hematopoietic cells by polymerase chain reaction amplification. Blood. 1991 Nov 1;78(9):2222–2228. [PubMed] [Google Scholar]
- Zhao Z., Bouchard P., Diltz C. D., Shen S. H., Fischer E. H. Purification and characterization of a protein tyrosine phosphatase containing SH2 domains. J Biol Chem. 1993 Feb 5;268(4):2816–2820. [PubMed] [Google Scholar]