Abstract
Monocyte-endothelial cell interactions play an important role in the early stages of atherosclerosis, and it is hypothesized that regulation of metalloproteinase production by these interactions contributes to this pathological process. The effects of monocytic cell-endothelial cell interactions on monocytic metalloproteinase production were investigated using an in vitro system, focusing on the role of endothelial cell secretions and physical contact as effectors in the regulation of monocytic metalloproteinase expression. Human umbilical vein endothelial cells (HUVECs) and the human monocytic cell line THP-1 were used, and changes in the levels of THP-1 metalloproteinase secretion and mRNA were measured. When THP-1 cells were incubated for 18 hours with HUVEC conditioned medium (CM), a four- to eightfold induction of the metalloproteinase MMP-9 was observed at both the mRNA and protein levels; however, levels of another metalloproteinase, MMP-2, were unaffected. The induction of MMP-9 by HUVEC CM was confirmed using freshly isolated human monocytes. A sevenfold increase in MMP-9 levels was observed with apically collected HUVEC CM but not with basally collected CM. THP-1 cells incubated with paraformaldehyde-fixed HUVECs and isolated HUVEC plasma membranes showed an eightfold increase in MMP-9 levels, and measurements of MMP-9 activity found in THP-1 conditioned medium due to either HUVEC contact or HUVEC CM showed a threefold increase. The molecular weight of the endothelial secreted effector molecule(s) was determined to be 30 +/- 6 kd. The data show that endothelial cells through the release of soluble factors and through direct contact with monocytic cells regulate monocytic metalloproteinase production, which has implications for the atherogenic process.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Au Y. P., Montgomery K. F., Clowes A. W. Heparin inhibits collagenase gene expression mediated by phorbol ester-responsive element in primate arterial smooth muscle cells. Circ Res. 1992 May;70(5):1062–1069. doi: 10.1161/01.res.70.5.1062. [DOI] [PubMed] [Google Scholar]
- Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia. 1991 Jan 15;47(1):22–31. doi: 10.1007/BF02041244. [DOI] [PubMed] [Google Scholar]
- Beekhuizen H., van Furth R. Monocyte adherence to human vascular endothelium. J Leukoc Biol. 1993 Oct;54(4):363–378. [PubMed] [Google Scholar]
- Biswas C., Zhang Y., DeCastro R., Guo H., Nakamura T., Kataoka H., Nabeshima K. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 1995 Jan 15;55(2):434–439. [PubMed] [Google Scholar]
- Bombara C., Ignotz R. A. TGF-beta inhibits proliferation of and promotes differentiation of human promonocytic leukemia cells. J Cell Physiol. 1992 Oct;153(1):30–37. doi: 10.1002/jcp.1041530106. [DOI] [PubMed] [Google Scholar]
- Brown D. L., Hibbs M. S., Kearney M., Loushin C., Isner J. M. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation. 1995 Apr 15;91(8):2125–2131. doi: 10.1161/01.cir.91.8.2125. [DOI] [PubMed] [Google Scholar]
- Chandrasekhar S., Harvey A. K., Dell C. P., Ambler S. J., Smith C. W. Identification of a novel chemical series that blocks interleukin-1-stimulated metalloprotease activity in chondrocytes. J Pharmacol Exp Ther. 1995 Jun;273(3):1519–1528. [PubMed] [Google Scholar]
- Chroneos Z., Shepherd V. L. Differential regulation of the mannose and SP-A receptors on macrophages. Am J Physiol. 1995 Dec;269(6 Pt 1):L721–L726. doi: 10.1152/ajplung.1995.269.6.L721. [DOI] [PubMed] [Google Scholar]
- Colige A. C., Lambert C. A., Nusgens B. V., Lapière C. M. Effect of cell-cell and cell-matrix interactions on the response of fibroblasts to epidermal growth factor in vitro. Expression of collagen type I, collagenase, stromelysin and tissue inhibitor of metalloproteinases. Biochem J. 1992 Jul 1;285(Pt 1):215–221. doi: 10.1042/bj2850215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhawan S., Weeks B. S., Soderland C., Schnaper H. W., Toro L. A., Asthana S. P., Hewlett I. K., Stetler-Stevenson W. G., Yamada S. S., Yamada K. M. HIV-1 infection alters monocyte interactions with human microvascular endothelial cells. J Immunol. 1995 Jan 1;154(1):422–432. [PubMed] [Google Scholar]
- Ellis S. M., Nabeshima K., Biswas C. Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res. 1989 Jun 15;49(12):3385–3391. [PubMed] [Google Scholar]
- Faggiotto A., Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984 Jul-Aug;4(4):341–356. doi: 10.1161/01.atv.4.4.341. [DOI] [PubMed] [Google Scholar]
- Galis Z. S., Sukhova G. K., Lark M. W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994 Dec;94(6):2493–2503. doi: 10.1172/JCI117619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
- Gimbrone M. A., Jr, Cotran R. S., Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974 Mar;60(3):673–684. doi: 10.1083/jcb.60.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goishi K., Higashiyama S., Klagsbrun M., Nakano N., Umata T., Ishikawa M., Mekada E., Taniguchi N. Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: conversion from juxtacrine to paracrine growth factor activity. Mol Biol Cell. 1995 Aug;6(8):967–980. doi: 10.1091/mbc.6.8.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross J. L., Moscatelli D., Rifkin D. B. Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci U S A. 1983 May;80(9):2623–2627. doi: 10.1073/pnas.80.9.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huhtala P., Tuuttila A., Chow L. T., Lohi J., Keski-Oja J., Tryggvason K. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem. 1991 Sep 5;266(25):16485–16490. [PubMed] [Google Scholar]
- Joris I., Zand T., Nunnari J. J., Krolikowski F. J., Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol. 1983 Dec;113(3):341–358. [PMC free article] [PubMed] [Google Scholar]
- Ketis N. V., Hoover R. L., Karnovsky M. J. Isolation of bovine aortic endothelial cell plasma membranes: identification of membrane-associated cytoskeletal proteins. J Cell Physiol. 1986 Aug;128(2):162–170. doi: 10.1002/jcp.1041280205. [DOI] [PubMed] [Google Scholar]
- Kim J. A., Territo M. C., Wayner E., Carlos T. M., Parhami F., Smith C. W., Haberland M. E., Fogelman A. M., Berliner J. A. Partial characterization of leukocyte binding molecules on endothelial cells induced by minimally oxidized LDL. Arterioscler Thromb. 1994 Mar;14(3):427–433. doi: 10.1161/01.atv.14.3.427. [DOI] [PubMed] [Google Scholar]
- Lacraz S., Dayer J. M., Nicod L., Welgus H. G. 1,25-dihydroxyvitamin D3 dissociates production of interstitial collagenase and 92-kDa gelatinase in human mononuclear phagocytes. J Biol Chem. 1994 Mar 4;269(9):6485–6490. [PubMed] [Google Scholar]
- Lacraz S., Isler P., Vey E., Welgus H. G., Dayer J. M. Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. J Biol Chem. 1994 Sep 2;269(35):22027–22033. [PubMed] [Google Scholar]
- Liotta L. A., Stetler-Stevenson W. G. Metalloproteinases and cancer invasion. Semin Cancer Biol. 1990 Apr;1(2):99–106. [PubMed] [Google Scholar]
- Maciag T., Hoover G. A., Weinstein R. High and low molecular weight forms of endothelial cell growth factor. J Biol Chem. 1982 May 25;257(10):5333–5336. [PubMed] [Google Scholar]
- Magargal W. W., Dickinson E. S., Slakey L. L. Distribution of membrane marker enzymes in cultured arterial endothelial and smooth muscle cells. The subcellular location of oleoyl-CoA:1-acyl-sn-glycero-3-phosphocholine acyltransferase. J Biol Chem. 1978 Nov 25;253(22):8311–8318. [PubMed] [Google Scholar]
- Meikle M. C., Bord S., Hembry R. M., Compston J., Croucher P. I., Reynolds J. J. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines. J Cell Sci. 1992 Dec;103(Pt 4):1093–1099. doi: 10.1242/jcs.103.4.1093. [DOI] [PubMed] [Google Scholar]
- Miyauchi T., Kanekura T., Yamaoka A., Ozawa M., Miyazawa S., Muramatsu T. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem. 1990 Feb;107(2):316–323. doi: 10.1093/oxfordjournals.jbchem.a123045. [DOI] [PubMed] [Google Scholar]
- Morita T., Yoshizumi M., Kurihara H., Maemura K., Nagai R., Yazaki Y. Shear stress increases heparin-binding epidermal growth factor-like growth factor mRNA levels in human vascular endothelial cells. Biochem Biophys Res Commun. 1993 Nov 30;197(1):256–262. doi: 10.1006/bbrc.1993.2469. [DOI] [PubMed] [Google Scholar]
- Netzel-Arnett S., Mallya S. K., Nagase H., Birkedal-Hansen H., Van Wart H. E. Continuously recording fluorescent assays optimized for five human matrix metalloproteinases. Anal Biochem. 1991 May 15;195(1):86–92. doi: 10.1016/0003-2697(91)90299-9. [DOI] [PubMed] [Google Scholar]
- Nikkari S. T., Höyhtyä M., Isola J., Nikkari T. Macrophages contain 92-kd gelatinase (MMP-9) at the site of degenerated internal elastic lamina in temporal arteritis. Am J Pathol. 1996 Nov;149(5):1427–1433. [PMC free article] [PubMed] [Google Scholar]
- Noël A. C., Polette M., Lewalle J. M., Munaut C., Emonard H. P., Birembaut P., Foidart J. M. Coordinate enhancement of gelatinase A mRNA and activity levels in human fibroblasts in response to breast-adenocarcinoma cells. Int J Cancer. 1994 Feb 1;56(3):331–336. doi: 10.1002/ijc.2910560306. [DOI] [PubMed] [Google Scholar]
- Rajabi M. R., Singh A. Cell origin and paracrine control of interstitial collagenase in the guinea pig uterine cervix--evidence for a low molecular weight epithelial cell-derived collagenase stimulator. Biol Reprod. 1995 Mar;52(3):516–523. doi: 10.1095/biolreprod52.3.516. [DOI] [PubMed] [Google Scholar]
- Ribeiro S. M., Schultz-Cherry S., Murphy-Ullrich J. E. Heparin-binding vitronectin up-regulates latent TGF-beta production by bovine aortic endothelial cells. J Cell Sci. 1995 Apr;108(Pt 4):1553–1561. doi: 10.1242/jcs.108.4.1553. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
- Thomas W. A., Reiner J. M., Florentin R. A., Scott R. F. Population dynamics of arterial cells during atherogenesis. VIII. Separation of the roles of injury and growth stimulation in early aortic atherogenesis in swine originating in pre-existing intimal smooth muscle cell masses. Exp Mol Pathol. 1979 Aug;31(1):124–144. doi: 10.1016/0014-4800(79)90013-3. [DOI] [PubMed] [Google Scholar]
- Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980 Aug;26(2):171–176. doi: 10.1002/ijc.2910260208. [DOI] [PubMed] [Google Scholar]
- Unemori E. N., Bouhana K. S., Werb Z. Vectorial secretion of extracellular matrix proteins, matrix-degrading proteinases, and tissue inhibitor of metalloproteinases by endothelial cells. J Biol Chem. 1990 Jan 5;265(1):445–451. [PubMed] [Google Scholar]
- Unemori E. N., Ferrara N., Bauer E. A., Amento E. P. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol. 1992 Dec;153(3):557–562. doi: 10.1002/jcp.1041530317. [DOI] [PubMed] [Google Scholar]
- Welgus H. G., Campbell E. J., Cury J. D., Eisen A. Z., Senior R. M., Wilhelm S. M., Goldberg G. I. Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest. 1990 Nov;86(5):1496–1502. doi: 10.1172/JCI114867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie B., Dong Z., Fidler I. J. Regulatory mechanisms for the expression of type IV collagenases/gelatinases in murine macrophages. J Immunol. 1994 Apr 1;152(7):3637–3644. [PubMed] [Google Scholar]
- Yoshizumi M., Kourembanas S., Temizer D. H., Cambria R. P., Quertermous T., Lee M. E. Tumor necrosis factor increases transcription of the heparin-binding epidermal growth factor-like growth factor gene in vascular endothelial cells. J Biol Chem. 1992 May 15;267(14):9467–9469. [PubMed] [Google Scholar]
- Zerwes H. G., Risau W. Polarized secretion of a platelet-derived growth factor-like chemotactic factor by endothelial cells in vitro. J Cell Biol. 1987 Nov;105(5):2037–2041. doi: 10.1083/jcb.105.5.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]



