Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Oct;96(4):1779–1785. doi: 10.1172/JCI118223

Markedly inhibited 7-dehydrocholesterol-delta 7-reductase activity in liver microsomes from Smith-Lemli-Opitz homozygotes.

S Shefer 1, G Salen 1, A K Batta 1, A Honda 1, G S Tint 1, M Irons 1, E R Elias 1, T C Chen 1, M F Holick 1
PMCID: PMC185814  PMID: 7560069

Abstract

We investigated the enzyme defect in late cholesterol biosynthesis in the Smith-Lemli-Opitz syndrome, a recessively inherited developmental disorder characterized by facial dysmorphism, mental retardation, and multiple organ congenital anomalies. Reduced plasma and tissue cholesterol with increased 7-dehydrocholesterol concentrations are biochemical features diagnostic of the inherited enzyme defect. Using isotope incorporation assays, we measured the transformation of the precursors, [3 alpha- 3H]lathosterol and [1,2-3H]7-dehydrocholesterol into cholesterol by liver microsomes from seven controls and four Smith-Lemli-Opitz homozygous subjects. The introduction of the double bond in lathosterol at C-5[6] to form 7-dehydrocholesterol that is catalyzed by lathosterol-5-dehydrogenase was equally rapid in controls and homozygotes liver microsomes (120 +/- 8 vs 100 +/- 7 pmol/mg protein per min, P = NS). In distinction, the reduction of the double bond at C-7 [8] in 7-dehydrocholesterol to yield cholesterol catalyzed by 7-dehydrocholesterol-delta 7-reductase was nine times greater in controls than homozygotes microsomes (365 +/- 23 vs 40 +/- 4 pmol/mg protein per min, P < 0.0001). These results demonstrate that the pathway of lathosterol to cholesterol in human liver includes 7-dehydrocholesterol as a key intermediate. In Smith-Lemli-Opitz homozygotes, the transformation of 7-dehydrocholesterol to cholesterol by hepatic microsomes was blocked although 7-dehydrocholesterol was produced abundantly from lathosterol. Thus, lathosterol 5-dehydrogenase is equally active which indicates that homozygotes liver microsomes are viable. Accordingly, microsomal 7-dehydrocholesterol-delta 7-reductase is inherited abnormally in Smith-Lemli-Opitz homozygotes.

Full text

PDF
1779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batta A. K., Tint G. S., Shefer S., Abuelo D., Salen G. Identification of 8-dehydrocholesterol (cholesta-5,8-dien-3 beta-ol) in patients with Smith-Lemli-Opitz syndrome. J Lipid Res. 1995 Apr;36(4):705–713. [PubMed] [Google Scholar]
  2. Connor W. E. A cholesterol deficiency syndrome in humans. J Clin Invest. 1995 Jan;95(1):2–2. doi: 10.1172/JCI117639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEMPSEY M. E., SEATON J. D., SCHROEPFER G. J., Jr, TROCKMAN R. W. THE INTERMEDIARY ROLE OF DELTA-5,7-CHOLESTADIEN-3-BETA-OL IN CHOLESTEROL BIOSYNTHESIS. J Biol Chem. 1964 May;239:1381–1387. [PubMed] [Google Scholar]
  4. Holick M. F., MacLaughlin J. A., Clark M. B., Holick S. A., Potts J. T., Jr, Anderson R. R., Blank I. H., Parrish J. A., Elias P. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980 Oct 10;210(4466):203–205. doi: 10.1126/science.6251551. [DOI] [PubMed] [Google Scholar]
  5. Holick M. F., MacLaughlin J. A., Doppelt S. H. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981 Feb 6;211(4482):590–593. doi: 10.1126/science.6256855. [DOI] [PubMed] [Google Scholar]
  6. Honda A., Tint G. S., Salen G., Batta A. K., Chen T. S., Shefer S. Defective conversion of 7-dehydrocholesterol to cholesterol in cultured skin fibroblasts from Smith-Lemli-Opitz syndrome homozygotes. J Lipid Res. 1995 Jul;36(7):1595–1601. [PubMed] [Google Scholar]
  7. Irons M., Elias E. R., Salen G., Tint G. S., Batta A. K. Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet. 1993 May 29;341(8857):1414–1414. doi: 10.1016/0140-6736(93)90983-n. [DOI] [PubMed] [Google Scholar]
  8. KANDUTSCH A. A., RUSSELL A. E. Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol. J Biol Chem. 1960 Aug;235:2256–2261. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Paik Y. K., Billheimer J. T., Magolda R. L., Gaylor J. L. Microsomal enzymes of cholesterol biosynthesis from lanosterol. Solubilization and purification of steroid 8-isomerase. J Biol Chem. 1986 May 15;261(14):6470–6477. [PubMed] [Google Scholar]
  11. Pill J., Schmidt F. H., Stegmeier K., Witte E. C. Effects of BM 15.766 on serum lipids in rats. Horm Metab Res. 1985 Oct;17(10):543–544. doi: 10.1055/s-2007-1013600. [DOI] [PubMed] [Google Scholar]
  12. Reinhart M. P., Billheimer J. T., Faust J. R., Gaylor J. L. Subcellular localization of the enzymes of cholesterol biosynthesis and metabolism in rat liver. J Biol Chem. 1987 Jul 15;262(20):9649–9655. [PubMed] [Google Scholar]
  13. SCHROEPFER G. J., Jr, FRANTZ I. D., Jr Conversion of delta7-cholestenol-4-C-14 and 7-dehydro-cholesterol-4-C-14 to cholesterol. J Biol Chem. 1961 Dec;236:3137–3140. [PubMed] [Google Scholar]
  14. SMITH D. W., LEMLI L., OPITZ J. M. A NEWLY RECOGNIZED SYNDROME OF MULTIPLE CONGENITAL ANOMALIES. J Pediatr. 1964 Feb;64:210–217. doi: 10.1016/s0022-3476(64)80264-x. [DOI] [PubMed] [Google Scholar]
  15. Shefer S., Nguyen L. B., Salen G., Ness G. C., Chowdhary I. R., Lerner S., Batta A. K., Tint G. S. Differing effects of cholesterol and taurocholate on steady state hepatic HMG-CoA reductase and cholesterol 7 alpha-hydroxylase activities and mRNA levels in the rat. J Lipid Res. 1992 Aug;33(8):1193–1200. [PubMed] [Google Scholar]
  16. Shefer S., Salen G., Bullock J., Nguyen L. B., Ness G. C., Vhao Z., Belamarich P. F., Chowdhary I., Lerner S., Batta A. K. The effect of increased hepatic sitosterol on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol 7 alpha-hydroxylase in the rat and sitosterolemic homozygotes. Hepatology. 1994 Jul;20(1 Pt 1):213–219. doi: 10.1016/0270-9139(94)90155-4. [DOI] [PubMed] [Google Scholar]
  17. Tint G. S., Irons M., Elias E. R., Batta A. K., Frieden R., Chen T. S., Salen G. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med. 1994 Jan 13;330(2):107–113. doi: 10.1056/NEJM199401133300205. [DOI] [PubMed] [Google Scholar]
  18. Tint G. S., Salen G. Evidence for the early reduction of the 24,25 double bond in the conversion of lanosterol to cholesterol in cerebrotendinous xanthomatosis. Metabolism. 1977 Jul;26(7):721–729. doi: 10.1016/0026-0495(77)90059-2. [DOI] [PubMed] [Google Scholar]
  19. Tint G. S., Salen G. Transformation of 5 alpha-cholest-7-en-3 beta-ol to cholesterol and cholestanol in cerebrotendinous xanthomatosis. J Lipid Res. 1974 May;15(3):256–262. [PubMed] [Google Scholar]
  20. Trzaskos J., Kawata S., Gaylor J. L. Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14 alpha-methyl demethylase cytochrome P-450 from hepatic microsomes. J Biol Chem. 1986 Nov 5;261(31):14651–14657. [PubMed] [Google Scholar]
  21. Xu G., Salen G., Shefer S., Ness G. C., Chen T. S., Zhao Z., Tint G. S. Reproducing abnormal cholesterol biosynthesis as seen in the Smith-Lemli-Opitz syndrome by inhibiting the conversion of 7-dehydrocholesterol to cholesterol in rats. J Clin Invest. 1995 Jan;95(1):76–81. doi: 10.1172/JCI117678. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES