Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Apr;150(4):1407–1420.

Differential pathogenesis of lethal mousepox in congenic DBA/2 mice implicates natural killer cell receptor NKR-P1 in necrotizing hepatitis and the fifth component of complement in recruitment of circulating leukocytes to spleen.

D G Brownstein 1, L Gras 1
PMCID: PMC1858154  PMID: 9094996

Abstract

Innate resistance of C57BL/6 (B6) mice to lethal mousepox is controlled by multiple genes. Previously, four resistance genes were localized to specific subchromosomal regions and transferred onto a susceptible DBA/2 (D2) background by serial backcrossing and intercrossing to produce congenic strains. Intraperitoneally inoculated ectromelia virus was uniformly lethal and achieved similar titers in B6 and D2 mice but elicited differential responses in liver, spleen, and circulating blood leukocytes. The distribution of these response phenotypes in congenic strains linked control of phenotypes with specific subchromosomal regions. D2.R1 mice, which carried a differential segment of chromosome 6, exhibited a B6 liver response and intermediate spleen and circulating leukocyte responses. D2.R2 and D2.R4 mice, which carried differential segments of chromosomes 2 and 1, respectively, exhibited a D2 liver response, a B6 spleen response, and an intermediate circulating leukocyte response. The localization of control of liver response phenotypes to chromosome 6 implicates cells that express natural killer (NK) cell receptor NKR-P1 alloantigens. The localization of control of spleen and circulating leukocyte responses to chromosomes 1, 2, and 6 implicates NK cells, the fifth component of complement, and a gene near the selectin gene complex in recruitment of circulating leukocytes to spleen.

Full text

PDF
1407

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Koseki H., Zijlstra M., Taniguchi M. Positive selection of invariant V alpha 14+ T cells by non-major histocompatibility complex-encoded class I-like molecules expressed on bone marrow-derived cells. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1200–1204. doi: 10.1073/pnas.92.4.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arase H., Arase N., Nakagawa K., Good R. A., Onoé K. NK1.1+ CD4+ CD8- thymocytes with specific lymphokine secretion. Eur J Immunol. 1993 Jan;23(1):307–310. doi: 10.1002/eji.1830230151. [DOI] [PubMed] [Google Scholar]
  3. Arase H., Arase N., Saito T. Interferon gamma production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J Exp Med. 1996 May 1;183(5):2391–2396. doi: 10.1084/jem.183.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bendelac A., Lantz O., Quimby M. E., Yewdell J. W., Bennink J. R., Brutkiewicz R. R. CD1 recognition by mouse NK1+ T lymphocytes. Science. 1995 May 12;268(5212):863–865. doi: 10.1126/science.7538697. [DOI] [PubMed] [Google Scholar]
  5. Bevilacqua M. P., Pober J. S., Mendrick D. L., Cotran R. S., Gimbrone M. A., Jr Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9238–9242. doi: 10.1073/pnas.84.24.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bevilacqua M. P., Stengelin S., Gimbrone M. A., Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989 Mar 3;243(4895):1160–1165. doi: 10.1126/science.2466335. [DOI] [PubMed] [Google Scholar]
  7. Bhatt P. N., Jacoby R. O., Gras L. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. IV. Studies with the Moscow strain. Arch Virol. 1988;100(3-4):221–230. doi: 10.1007/BF01487685. [DOI] [PubMed] [Google Scholar]
  8. Blanden R. V., Gardner I. D. The cell-mediated immune response to ectromelia virus infection. I. Kinetics and characteristics of the primary effector T cell response in vivo. Cell Immunol. 1976 Mar 15;22(2):271–282. doi: 10.1016/0008-8749(76)90029-0. [DOI] [PubMed] [Google Scholar]
  9. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. I. The effects of anti-thymocyte serum. J Exp Med. 1970 Nov;132(5):1035–1054. doi: 10.1084/jem.132.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brownstein D. G., Bhatt P. N., Gras L., Budris T. Serial backcross analysis of genetic resistance to mousepox, using marker loci for Rmp-2 and Rmp-3. J Virol. 1992 Dec;66(12):7073–7079. doi: 10.1128/jvi.66.12.7073-7079.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brownstein D. G., Bhatt P. N., Gras L. Ectromelia virus replication in major target organs of innately resistant and susceptible mice after intravenous infection. Arch Virol. 1993;129(1-4):65–75. doi: 10.1007/BF01316885. [DOI] [PubMed] [Google Scholar]
  12. Brownstein D. G., Bhatt P. N., Gras L., Jacoby R. O. Chromosomal locations and gonadal dependence of genes that mediate resistance to ectromelia (mousepox) virus-induced mortality. J Virol. 1991 Apr;65(4):1946–1951. doi: 10.1128/jvi.65.4.1946-1951.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brownstein D. G., Gras L. Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J Virol. 1995 Nov;69(11):6958–6964. doi: 10.1128/jvi.69.11.6958-6964.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brownstein D., Bhatt P. N., Jacoby R. O. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. V. Genetics of resistance to the Moscow strain. Arch Virol. 1989;107(1-2):35–41. doi: 10.1007/BF01313876. [DOI] [PubMed] [Google Scholar]
  15. Bullard D. C., Kunkel E. J., Kubo H., Hicks M. J., Lorenzo I., Doyle N. A., Doerschuk C. M., Ley K., Beaudet A. L. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J Exp Med. 1996 May 1;183(5):2329–2336. doi: 10.1084/jem.183.5.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Buller R. M., Palumbo G. J. Poxvirus pathogenesis. Microbiol Rev. 1991 Mar;55(1):80–122. doi: 10.1128/mr.55.1.80-122.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. D'Eustachio P., Kristensen T., Wetsel R. A., Riblet R., Taylor B. A., Tack B. F. Chromosomal location of the genes encoding complement components C5 and factor H in the mouse. J Immunol. 1986 Dec 15;137(12):3990–3995. [PubMed] [Google Scholar]
  18. Delano M. L., Brownstein D. G. Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol. 1995 Sep;69(9):5875–5877. doi: 10.1128/jvi.69.9.5875-5877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dietrich W., Katz H., Lincoln S. E., Shin H. S., Friedman J., Dracopoli N. C., Lander E. S. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 1992 Jun;131(2):423–447. doi: 10.1093/genetics/131.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gervais F., Desforges C., Skamene E. The C5-sufficient A/J congenic mouse strain. Inflammatory response and resistance to Listeria monocytogenes. J Immunol. 1989 Mar 15;142(6):2057–2060. [PubMed] [Google Scholar]
  21. Gervais F., Stevenson M., Skamene E. Genetic control of resistance to Listeria monocytogenes: regulation of leukocyte inflammatory responses by the Hc locus. J Immunol. 1984 Apr;132(4):2078–2083. [PubMed] [Google Scholar]
  22. Giorda R., Rudert W. A., Vavassori C., Chambers W. H., Hiserodt J. C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990 Sep 14;249(4974):1298–1300. doi: 10.1126/science.2399464. [DOI] [PubMed] [Google Scholar]
  23. Giorda R., Weisberg E. P., Ip T. K., Trucco M. Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. J Immunol. 1992 Sep 15;149(6):1957–1963. [PubMed] [Google Scholar]
  24. Gooding L. R. Virus proteins that counteract host immune defenses. Cell. 1992 Oct 2;71(1):5–7. doi: 10.1016/0092-8674(92)90259-f. [DOI] [PubMed] [Google Scholar]
  25. Hapel A. J., Bablanian R., Cole G. A. Inductive requirements for the generation of virus-specific T lymphocytes. III. Production of target cells lysable by poxvirus-specific and allospecific cytotoxic T lymphocytes with membrane fragments bearing viral and H-2 antigens. J Immunol. 1980 Apr;124(4):1997–2003. [PubMed] [Google Scholar]
  26. Hashimoto W., Takeda K., Anzai R., Ogasawara K., Sakihara H., Sugiura K., Seki S., Kumagai K. Cytotoxic NK1.1 Ag+ alpha beta T cells with intermediate TCR induced in the liver of mice by IL-12. J Immunol. 1995 May 1;154(9):4333–4340. [PubMed] [Google Scholar]
  27. Imani F., Soloski M. J. Heat shock proteins can regulate expression of the Tla region-encoded class Ib molecule Qa-1. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10475–10479. doi: 10.1073/pnas.88.23.10475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jacoby R. O., Bhatt P. N., Brownstein D. G. Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch Virol. 1989;108(1-2):49–58. doi: 10.1007/BF01313742. [DOI] [PubMed] [Google Scholar]
  29. Jacoby R. O., Bhatt P. N. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. II. Pathogenesis. Lab Anim Sci. 1987 Feb;37(1):16–22. [PubMed] [Google Scholar]
  30. Karupiah G., Fredrickson T. N., Holmes K. L., Khairallah L. H., Buller R. M. Importance of interferons in recovery from mousepox. J Virol. 1993 Jul;67(7):4214–4226. doi: 10.1128/jvi.67.7.4214-4226.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kees U., Blanden R. V. A single genetic element in H-2K affects mouse T-cell antiviral function in poxvirus infection. J Exp Med. 1976 Feb 1;143(2):450–455. doi: 10.1084/jem.143.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kelner G. S., Kennedy J., Bacon K. B., Kleyensteuber S., Largaespada D. A., Jenkins N. A., Copeland N. G., Bazan J. F., Moore K. W., Schall T. J. Lymphotactin: a cytokine that represents a new class of chemokine. Science. 1994 Nov 25;266(5189):1395–1399. doi: 10.1126/science.7973732. [DOI] [PubMed] [Google Scholar]
  33. Krieg P., Amtmann E., Sauer G. The simultaneous extraction of high-molecular-weight DNA and of RNA from solid tumors. Anal Biochem. 1983 Oct 15;134(2):288–294. doi: 10.1016/0003-2697(83)90299-3. [DOI] [PubMed] [Google Scholar]
  34. Larsen E., Celi A., Gilbert G. E., Furie B. C., Erban J. K., Bonfanti R., Wagner D. D., Furie B. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989 Oct 20;59(2):305–312. doi: 10.1016/0092-8674(89)90292-4. [DOI] [PubMed] [Google Scholar]
  35. Ley K., Tedder T. F. Leukocyte interactions with vascular endothelium. New insights into selectin-mediated attachment and rolling. J Immunol. 1995 Jul 15;155(2):525–528. [PubMed] [Google Scholar]
  36. McEver R. P. Selectins. Curr Opin Immunol. 1994 Feb;6(1):75–84. doi: 10.1016/0952-7915(94)90037-x. [DOI] [PubMed] [Google Scholar]
  37. McFarland H. I., Bigley N. J. AGM1+ spleen cells contain gamma interferon (IFN-gamma) gene transcripts in the early, sex-dependent production of IFN-gamma after picornavirus infection. J Virol. 1990 Sep;64(9):4407–4413. doi: 10.1128/jvi.64.9.4407-4413.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. O'Neill H. C., Blanden R. V. Mechanisms determining innate resistance to ectromelia virus infection in C57BL mice. Infect Immun. 1983 Sep;41(3):1391–1394. doi: 10.1128/iai.41.3.1391-1394.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ohteki T., MacDonald H. R. Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med. 1994 Aug 1;180(2):699–704. doi: 10.1084/jem.180.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ohteki T., Okuyama R., Seki S., Abo T., Sugiura K., Kusumi A., Ohmori T., Watanabe H., Kumagai K. Age-dependent increase of extrathymic T cells in the liver and their appearance in the periphery of older mice. J Immunol. 1992 Sep 1;149(5):1562–1570. [PubMed] [Google Scholar]
  41. Ohtsuka K., Sato K., Watanabe H., Kimura M., Asakura H., Abo T. Unique order of the lymphocyte subset induction in the liver and intestine of mice during Listeria monocytogenes infection. Cell Immunol. 1995 Mar;161(1):112–124. doi: 10.1006/cimm.1995.1015. [DOI] [PubMed] [Google Scholar]
  42. Pamer E. G., Wang C. R., Flaherty L., Lindahl K. F., Bevan M. J. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell. 1992 Jul 24;70(2):215–223. doi: 10.1016/0092-8674(92)90097-v. [DOI] [PubMed] [Google Scholar]
  43. Rosenberg L. T., Tachibana D. K. Mice deficient in C5. Prog Allergy. 1986;39:169–191. [PubMed] [Google Scholar]
  44. Ryan J. C., Turck J., Niemi E. C., Yokoyama W. M., Seaman W. E. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol. 1992 Sep 1;149(5):1631–1635. [PubMed] [Google Scholar]
  45. SCHELL K. Studies on the innate resistance of mice to infection with mousepox. I. Resistance and antibody production. Aust J Exp Biol Med Sci. 1960 Aug;38:271–288. doi: 10.1038/icb.1960.29. [DOI] [PubMed] [Google Scholar]
  46. SCHELL K. Studies on the innate resistance of mice to infection with mousepox. II. Route of inoculation and resistance; and some observations on the inheritance of resistance. Aust J Exp Biol Med Sci. 1960 Aug;38:289–299. doi: 10.1038/icb.1960.30. [DOI] [PubMed] [Google Scholar]
  47. Siegelman M. H., Cheng I. C., Weissman I. L., Wakeland E. K. The mouse lymph node homing receptor is identical with the lymphocyte cell surface marker Ly-22: role of the EGF domain in endothelial binding. Cell. 1990 May 18;61(4):611–622. doi: 10.1016/0092-8674(90)90473-r. [DOI] [PubMed] [Google Scholar]
  48. Stevenson M. M., Gervais F., Skamene E. Natural resistance to listeriosis: role of host inflammatory responsiveness. Clin Invest Med. 1984;7(4):297–301. [PubMed] [Google Scholar]
  49. Stroynowski I. Molecules related to class-I major histocompatibility complex antigens. Annu Rev Immunol. 1990;8:501–530. doi: 10.1146/annurev.iy.08.040190.002441. [DOI] [PubMed] [Google Scholar]
  50. Tedder T. F., Penta A. C., Levine H. B., Freedman A. S. Expression of the human leukocyte adhesion molecule, LAM1. Identity with the TQ1 and Leu-8 differentiation antigens. J Immunol. 1990 Jan 15;144(2):532–540. [PubMed] [Google Scholar]
  51. Traktman P. Poxviruses: an emerging portrait of biological strategy. Cell. 1990 Aug 24;62(4):621–626. doi: 10.1016/0092-8674(90)90106-o. [DOI] [PubMed] [Google Scholar]
  52. Tsuru S., Kitani H., Seno M., Abe M., Zinnaka Y., Nomoto K. Mechanism of protection during the early phase of a generalized viral infection. I. Contribution of phagocytes to protection against ectromelia virus. J Gen Virol. 1983 Sep;64(Pt 9):2021–2026. doi: 10.1099/0022-1317-64-9-2021. [DOI] [PubMed] [Google Scholar]
  53. Turner P. C., Moyer R. W. The molecular pathogenesis of poxviruses. Curr Top Microbiol Immunol. 1990;163:125–151. doi: 10.1007/978-3-642-75605-4_5. [DOI] [PubMed] [Google Scholar]
  54. Watson M. L., Kingsmore S. F., Johnston G. I., Siegelman M. H., Le Beau M. M., Lemons R. S., Bora N. S., Howard T. A., Weissman I. L., McEver R. P. Genomic organization of the selectin family of leukocyte adhesion molecules on human and mouse chromosome 1. J Exp Med. 1990 Jul 1;172(1):263–272. doi: 10.1084/jem.172.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yokoyama W. M. Natural killer cell receptors specific for major histocompatibility complex class I molecules. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3081–3085. doi: 10.1073/pnas.92.8.3081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yokoyama W. M., Ryan J. C., Hunter J. J., Smith H. R., Stark M., Seaman W. E. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J Immunol. 1991 Nov 1;147(9):3229–3236. [PubMed] [Google Scholar]
  57. Yoshimoto T., Paul W. E. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med. 1994 Apr 1;179(4):1285–1295. doi: 10.1084/jem.179.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zinkernagel R. M., Althage A. Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J Exp Med. 1977 Mar 1;145(3):644–651. doi: 10.1084/jem.145.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES