Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1998 Apr;152(4):1071–1079.

Methylation alterations of the MyoD1 upstream region are predictive of subclassification of human rhabdomyosarcomas.

B Chen 1, P Dias 1, J J Jenkins 3rd 1, V H Savell 1, D M Parham 1
PMCID: PMC1858244  PMID: 9546368

Abstract

MyoD1 expression is a distinguishing characteristic of rhabdomyosarcoma. In this study, distinct methylation alterations were identified in the 5' flanking region of the MyoD1 gene from the two major subtypes, ie, alveolar and embryonal rhabdomyosarcoma. The MyoD1 methylation patterns of 26 rhabdomyosarcomas were compared with that of normal skeletal muscle and nonmuscle specimens by Southern blot analysis using methylation-sensitive restriction enzymes HhaI and HpaII. A 5-kb region immediately upstream of the MyoD1 coding sequence was found to be methylated in adult muscle and all nonmuscle tissues tested. The MyoD1 upstream region was unmethylated in the majority of the alveolar rhabdomyosarcomas (13 of 15, 87%) examined in this study. In contrast, 10 of 11 (91%) embryonal rhabdomyosarcomas showed a methylation pattern that was also observed in fetal muscle cells, in which the CpG sites in the MyoD1 upstream region were partially methylated. Our data suggest that the methylation status of the MyoD1 upstream CpG sites may be related to rhabdomyosarcoma tumorigenesis and may have valuable implications for its differential diagnosis.

Full text

PDF
1071

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr F. G., Chatten J., D'Cruz C. M., Wilson A. E., Nauta L. E., Nycum L. M., Biegel J. A., Womer R. B. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 1995 Feb 15;273(7):553–557. [PubMed] [Google Scholar]
  2. Barr F. G., Galili N., Holick J., Biegel J. A., Rovera G., Emanuel B. S. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993 Feb;3(2):113–117. doi: 10.1038/ng0293-113. [DOI] [PubMed] [Google Scholar]
  3. Bird A. P. The relationship of DNA methylation to cancer. Cancer Surv. 1996;28:87–101. [PubMed] [Google Scholar]
  4. Braun T., Bober E., Winter B., Rosenthal N., Arnold H. H. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 1990 Mar;9(3):821–831. doi: 10.1002/j.1460-2075.1990.tb08179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casola S., Pedone P. V., Cavazzana A. O., Basso G., Luksch R., d'Amore E. S., Carli M., Bruni C. B., Riccio A. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene. 1997 Mar 27;14(12):1503–1510. doi: 10.1038/sj.onc.1200956. [DOI] [PubMed] [Google Scholar]
  6. Davis R. J., D'Cruz C. M., Lovell M. A., Biegel J. A., Barr F. G. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994 Jun 1;54(11):2869–2872. [PubMed] [Google Scholar]
  7. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  8. Dias P., Parham D. M., Shapiro D. N., Tapscott S. J., Houghton P. J. Monoclonal antibodies to the myogenic regulatory protein MyoD1: epitope mapping and diagnostic utility. Cancer Res. 1992 Dec 1;52(23):6431–6439. [PubMed] [Google Scholar]
  9. Dias P., Parham D. M., Shapiro D. N., Webber B. L., Houghton P. J. Myogenic regulatory protein (MyoD1) expression in childhood solid tumors: diagnostic utility in rhabdomyosarcoma. Am J Pathol. 1990 Dec;137(6):1283–1291. [PMC free article] [PubMed] [Google Scholar]
  10. Downing J. R., Khandekar A., Shurtleff S. A., Head D. R., Parham D. M., Webber B. L., Pappo A. S., Hulshof M. G., Conn W. P., Shapiro D. N. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing's sarcoma. Am J Pathol. 1995 Mar;146(3):626–634. [PMC free article] [PubMed] [Google Scholar]
  11. Friedman E. Y., Rosbash M. The syntheiss of high yields of full-length reverse transcripts of globin mRNA. Nucleic Acids Res. 1977 Oct;4(10):3455–3471. doi: 10.1093/nar/4.10.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galili N., Davis R. J., Fredericks W. J., Mukhopadhyay S., Rauscher F. J., 3rd, Emanuel B. S., Rovera G., Barr F. G. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993 Nov;5(3):230–235. doi: 10.1038/ng1193-230. [DOI] [PubMed] [Google Scholar]
  13. Hiti A. L., Bogenmann E., Gonzales F., Jones P. A. Expression of the MyoD1 muscle determination gene defines differentiation capability but not tumorigenicity of human rhabdomyosarcomas. Mol Cell Biol. 1989 Nov;9(11):4722–4730. doi: 10.1128/mcb.9.11.4722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hähnel R., Harvey J., Kay P. Hypermethylation of the myogenic gene Myf-3 in human breast carcinomas. Anticancer Res. 1996 Jul-Aug;16(4A):2111–2115. [PubMed] [Google Scholar]
  15. Iacopetta B. J., Harmon D., Spagnolo D. V., House A. K., Kay P. H. Hypermethylation of the Myf-3 gene in human colorectal cancer. Anticancer Res. 1997 Jan-Feb;17(1A):429–432. [PubMed] [Google Scholar]
  16. Issa J. P., Baylin S. B., Herman J. G. DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia. 1997 Mar;11 (Suppl 1):S7–11. [PubMed] [Google Scholar]
  17. Montarras D., Chelly J., Bober E., Arnold H., Ott M. O., Gros F., Pinset C. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biol. 1991 Jun;3(6):592–600. [PubMed] [Google Scholar]
  18. Ogawa O., Eccles M. R., Szeto J., McNoe L. A., Yun K., Maw M. A., Smith P. J., Reeve A. E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature. 1993 Apr 22;362(6422):749–751. doi: 10.1038/362749a0. [DOI] [PubMed] [Google Scholar]
  19. Ohlsson R., Nyström A., Pfeifer-Ohlsson S., Töhönen V., Hedborg F., Schofield P., Flam F., Ekström T. J. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993 May;4(1):94–97. doi: 10.1038/ng0593-94. [DOI] [PubMed] [Google Scholar]
  20. Ott M. O., Bober E., Lyons G., Arnold H., Buckingham M. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development. 1991 Apr;111(4):1097–1107. doi: 10.1242/dev.111.4.1097. [DOI] [PubMed] [Google Scholar]
  21. Parham D. M. The molecular biology of childhood rhabdomyosarcoma. Semin Diagn Pathol. 1994 Feb;11(1):39–46. [PubMed] [Google Scholar]
  22. Parham D. M., Webber B., Holt H., Williams W. K., Maurer H. Immunohistochemical study of childhood rhabdomyosarcomas and related neoplasms. Results of an Intergroup Rhabdomyosarcoma study project. Cancer. 1991 Jun 15;67(12):3072–3080. doi: 10.1002/1097-0142(19910615)67:12<3072::aid-cncr2820671223>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  23. Pearson-White S. H. Human MyoD: cDNA and deduced amino acid sequence. Nucleic Acids Res. 1991 Mar 11;19(5):1148–1148. doi: 10.1093/nar/19.5.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pedone P. V., Tirabosco R., Cavazzana A. O., Ungaro P., Basso G., Luksch R., Carli M., Bruni C. B., Frunzio R., Riccio A. Mono- and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors. Hum Mol Genet. 1994 Jul;3(7):1117–1121. doi: 10.1093/hmg/3.7.1117. [DOI] [PubMed] [Google Scholar]
  25. Rhodes S. J., Konieczny S. F. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 1989 Dec;3(12B):2050–2061. doi: 10.1101/gad.3.12b.2050. [DOI] [PubMed] [Google Scholar]
  26. Rideout W. M., 3rd, Eversole-Cire P., Spruck C. H., 3rd, Hustad C. M., Coetzee G. A., Gonzales F. A., Jones P. A. Progressive increases in the methylation status and heterochromatinization of the myoD CpG island during oncogenic transformation. Mol Cell Biol. 1994 Sep;14(9):6143–6152. doi: 10.1128/mcb.14.9.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schäfer B. W., Czerny T., Bernasconi M., Genini M., Busslinger M. Molecular cloning and characterization of a human PAX-7 cDNA expressed in normal and neoplastic myocytes. Nucleic Acids Res. 1994 Nov 11;22(22):4574–4582. doi: 10.1093/nar/22.22.4574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scrable H. J., Johnson D. K., Rinchik E. M., Cavenee W. K. Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2182–2186. doi: 10.1073/pnas.87.6.2182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scrable H., Witte D., Shimada H., Seemayer T., Sheng W. W., Soukup S., Koufos A., Houghton P., Lampkin B., Cavenee W. Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer. 1989 Sep;1(1):23–35. doi: 10.1002/gcc.2870010106. [DOI] [PubMed] [Google Scholar]
  30. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  31. Taniguchi T., Okamoto K., Reeve A. E. Human p57(KIP2) defines a new imprinted domain on chromosome 11p but is not a tumour suppressor gene in Wilms tumour. Oncogene. 1997 Mar 13;14(10):1201–1206. doi: 10.1038/sj.onc.1200934. [DOI] [PubMed] [Google Scholar]
  32. Taniguchi T., Sullivan M. J., Ogawa O., Reeve A. E. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2159–2163. doi: 10.1073/pnas.92.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tapscott S. J., Thayer M. J., Weintraub H. Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science. 1993 Mar 5;259(5100):1450–1453. doi: 10.1126/science.8383879. [DOI] [PubMed] [Google Scholar]
  34. Tornaletti S., Pfeifer G. P. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene. 1995 Apr 20;10(8):1493–1499. [PubMed] [Google Scholar]
  35. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  36. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]
  37. Zhan S., Shapiro D. N., Helman L. J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest. 1994 Jul;94(1):445–448. doi: 10.1172/JCI117344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhan S., Shapiro D. N., Helman L. J. Loss of imprinting of IGF2 in Ewing's sarcoma. Oncogene. 1995 Dec 21;11(12):2503–2507. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES