Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Feb;150(2):735–745.

Inorganic fluoride. Divergent effects on human proximal tubular cell viability.

R A Zager 1, M Iwata 1
PMCID: PMC1858266  PMID: 9033286

Abstract

Fluoride (F) is a widely distributed nephrotoxin with exposure potentially resulting from environmental pollution and from fluorinated anesthetic use (eg, isoflurane). This study sought to characterize some of the subcellular determinants of fluoride cytotoxicity and to determine whether subtoxic F exposure affects tubular cell vulnerability to superimposed ATP depletion and nephrotoxic attack. Human proximal tubular cells (HK-2) were cultured with differing amounts of NaF (0 to 20 mmol/L, overlapping with clinically relevant intrarenal/urinary levels after fluorinated anesthetic use). After completing 24-hour exposures, cell injury was determined (vital dye uptake). Fluoride effects on cell deacylation ([3]H-C20:4 release) and PLA2 activity were also assessed. To determine whether subtoxic F exposure alters tubular cell susceptibility to superimposed injury, cells were exposed to subtoxic NaF doses for 0 to 24 hours and then challenged with simulated ischemia (ATP depletion plus Ca2+ overload) or a clinically relevant nephrotoxic insult (myoglobin exposure). NaF induced dose-dependent cytotoxicity (up to approximately 90% vital dye uptake and increased [3H]C20:4 release). Extracellular Ca2+ chelation (EGTA) and PLA2 inhibitor therapy (aristolochic acid, dibucaine, or mepacrine) each conferred significant protective effects. When subtoxic NaF doses were applied, partial cytosolic PLA2 depletion rapidly developed (approximately 85% within 3 hours, determined on cell extracts). These partially PLA2-depleted cells were markedly resistant to ATP depletion/Ca2+ ionophore injury and to myoglobin-induced attack (approximately 50% decrease in cell death). We conclude that 1) F induces dose-dependent cytotoxicity in cultured human proximal tubular cells, 2) this occurs, in part, via Ca(2+)- and PLA2-dependent mechanism(s), 3) partial cytosolic PLA2 depletion subsequently results, and 4) subtoxic fluoride exposure can acutely increase cell resistance to further attack. Reductions in cytosolic PLA2 activity could potentially contribute to this result.

Full text

PDF
735

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackmore P. F., Bocckino S. B., Waynick L. E., Exton J. H. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J Biol Chem. 1985 Nov 25;260(27):14477–14483. [PubMed] [Google Scholar]
  2. Cittanova M. L., Lelongt B., Verpont M. C., Geniteau-Legendre M., Wahbe F., Prie D., Coriat P., Ronco P. M. Fluoride ion toxicity in human kidney collecting duct cells. Anesthesiology. 1996 Feb;84(2):428–435. doi: 10.1097/00000542-199602000-00022. [DOI] [PubMed] [Google Scholar]
  3. Cousins M. J., Mazze R. I., Kosek J. C., Hitt B. A., Love F. V. The etiology of methoxyflurane nephrotoxicity. J Pharmacol Exp Ther. 1974 Sep;190(3):530–541. [PubMed] [Google Scholar]
  4. Dominguez J. H., Garcia J. G., Rothrock J. K., English D., Mann C. Fluoride mobilizes intracellular calcium and promotes Ca2+ influx in rat proximal tubules. Am J Physiol. 1991 Aug;261(2 Pt 2):F318–F327. doi: 10.1152/ajprenal.1991.261.2.F318. [DOI] [PubMed] [Google Scholar]
  5. Frascino J. A. Effect of inorganic fluoride on the renal concentrating mechanism. Possible nephrotoxicity in man. J Lab Clin Med. 1972 Feb;79(2):192–203. [PubMed] [Google Scholar]
  6. Frink E. J., Jr, Malan T. P., Jr, Isner R. J., Brown E. A., Morgan S. E., Brown B. R., Jr Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology. 1994 May;80(5):1019–1025. doi: 10.1097/00000542-199405000-00011. [DOI] [PubMed] [Google Scholar]
  7. Gessner B. D., Beller M., Middaugh J. P., Whitford G. M. Acute fluoride poisoning from a public water system. N Engl J Med. 1994 Jan 13;330(2):95–99. doi: 10.1056/NEJM199401133300203. [DOI] [PubMed] [Google Scholar]
  8. Giocondi M. C., Mamdouh Z., Le Grimellec C. Benzyl alcohol differently affects fluid phase endocytosis and exocytosis in renal epithelial cells. Biochim Biophys Acta. 1995 Mar 22;1234(2):197–202. doi: 10.1016/0005-2736(94)00284-v. [DOI] [PubMed] [Google Scholar]
  9. Gronich J. H., Bonventre J. V., Nemenoff R. A. Identification and characterization of a hormonally regulated form of phospholipase A2 in rat renal mesangial cells. J Biol Chem. 1988 Nov 15;263(32):16645–16651. [PubMed] [Google Scholar]
  10. Hoffman R., Mann J., Calderone J., Trumbull J., Burkhart M. Acute fluoride poisoning in a New Mexico elementary school. Pediatrics. 1980 May;65(5):897–900. [PubMed] [Google Scholar]
  11. Honda N., Hishida A., Ikuma K., Yonemura K. Acquired resistance to acute renal failure. Kidney Int. 1987 Jun;31(6):1233–1238. doi: 10.1038/ki.1987.136. [DOI] [PubMed] [Google Scholar]
  12. Iwata M., Herrington J., Zager R. A. Sphingosine: a mediator of acute renal tubular injury and subsequent cytoresistance. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8970–8974. doi: 10.1073/pnas.92.19.8970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iwata M., Zager R. A. Myoglobin inhibits proliferation of cultured human proximal tubular (HK-2) cells. Kidney Int. 1996 Sep;50(3):796–804. doi: 10.1038/ki.1996.378. [DOI] [PubMed] [Google Scholar]
  14. Jin L., Baillie T. A., Davis M. R., Kharasch E. D. Nephrotoxicity of sevoflurane compound A [fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether] in rats: evidence for glutathione and cysteine conjugate formation and the role of renal cysteine conjugate beta-lyase. Biochem Biophys Res Commun. 1995 May 16;210(2):498–506. doi: 10.1006/bbrc.1995.1688. [DOI] [PubMed] [Google Scholar]
  15. Kawase T., Ishikawa I., Suzuki A. NaF-induced Ca2+ mobilization is dependent upon the culture density in a parathyroid hormone-responsive osteoblast-like cell line. Life Sci. 1988;43(26):2241–2247. doi: 10.1016/0024-3205(88)90417-1. [DOI] [PubMed] [Google Scholar]
  16. Kawase T., Ishikawa I., Suzuki A. The calcium-mobilizing action of low concentrations of sodium fluoride in single fibroblasts. Life Sci. 1988;42(12):1253–1257. doi: 10.1016/0024-3205(88)90557-7. [DOI] [PubMed] [Google Scholar]
  17. Kennedy G. L., Jr Toxicology of fluorine-containing monomers. Crit Rev Toxicol. 1990;21(2):149–170. doi: 10.3109/10408449009089877. [DOI] [PubMed] [Google Scholar]
  18. Kessabi M., Braun J. P., Benard P., Burgat-Sacaze V., Rico A. G. Acute kidney toxicity of sodium fluoride in the rat. Toxicol Lett. 1980 Feb;5(2):169–174. doi: 10.1016/0378-4274(80)90168-x. [DOI] [PubMed] [Google Scholar]
  19. Kharasch E. D. Biotransformation of sevoflurane. Anesth Analg. 1995 Dec;81(6 Suppl):S27–S38. doi: 10.1097/00000539-199512001-00005. [DOI] [PubMed] [Google Scholar]
  20. Kharasch E. D., Hankins D. C., Thummel K. E. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995 Mar;82(3):689–699. doi: 10.1097/00000542-199503000-00011. [DOI] [PubMed] [Google Scholar]
  21. Koo W. S., Gengaro P. E., Burke T. J., Schrier R. W. Verapamil attenuates calcium-induced mitochondrial swelling and respiratory dysfunction. J Pharmacol Exp Ther. 1995 Apr;273(1):206–212. [PubMed] [Google Scholar]
  22. Lloret S., Moreno J. J. Immunochemical relatedness between secretory phospholipase A2 and intracellular phospholipase A2 activity linked with arachidonic acid mobilization in macrophages. Toxicon. 1994 Nov;32(11):1327–1336. doi: 10.1016/0041-0101(94)90405-7. [DOI] [PubMed] [Google Scholar]
  23. Matsumura C., Kemmotsu O., Kawano Y., Takita K., Sugimoto H., Mayumi T. Serum and urine inorganic fluoride levels following prolonged low-dose sevoflurane anesthesia combined with epidural block. J Clin Anesth. 1994 Sep-Oct;6(5):419–424. doi: 10.1016/s0952-8180(05)80015-7. [DOI] [PubMed] [Google Scholar]
  24. Mazze R. I., Calverley R. K., Smith N. T. Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology. 1977 Apr;46(4):265–271. [PubMed] [Google Scholar]
  25. Mazze R. I., Cousins M. J., Kosek J. C. Strain differences in metabolism and susceptibility to the nephrotoxic effects of methoxyflurane in rats. J Pharmacol Exp Ther. 1973 Feb;184(2):481–488. [PubMed] [Google Scholar]
  26. Mazze R. I., Shue G. L., Jackson S. H. Renal dysfunction associated with methoxyflurane anesthesia. A randomized, prospective clinical evaluation. JAMA. 1971 Apr 12;216(2):278–288. [PubMed] [Google Scholar]
  27. Mazze R. I., Trudell J. R., Cousins M. J. Methoxyflurane metabolism and renal dysfunction: clinical correlation in man. Anesthesiology. 1971 Sep;35(3):247–252. doi: 10.1097/00000542-197109000-00004. [DOI] [PubMed] [Google Scholar]
  28. Nakamura H., Nemenoff R. A., Gronich J. H., Bonventre J. V. Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest. 1991 May;87(5):1810–1818. doi: 10.1172/JCI115202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenthal M. D., Vishwanath B. S., Franson R. C. Effects of aristolochic acid on phospholipase A2 activity and arachidonate metabolism of human neutrophils. Biochim Biophys Acta. 1989 Jan 23;1001(1):1–8. doi: 10.1016/0005-2760(89)90299-3. [DOI] [PubMed] [Google Scholar]
  30. Ryan M. J., Johnson G., Kirk J., Fuerstenberg S. M., Zager R. A., Torok-Storb B. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 1994 Jan;45(1):48–57. doi: 10.1038/ki.1994.6. [DOI] [PubMed] [Google Scholar]
  31. Schnellmann R. G., Yang X., Carrick J. B. Arachidonic acid release in renal proximal tubule cell injuries and death. J Biochem Toxicol. 1994 Aug;9(4):211–217. doi: 10.1002/jbt.2570090406. [DOI] [PubMed] [Google Scholar]
  32. Taves D. R., Fry B. W., Freeman R. B., Gillies A. J. Toxicity following methoxyflurane anesthesia. II. Fluoride concentrations in nephrotoxicity. JAMA. 1970 Oct 5;214(1):91–95. [PubMed] [Google Scholar]
  33. Wallin J. D., Kaplan R. A. Effect of sodium fluoride on concentrating and diluting ability in the rat. Am J Physiol. 1977 Apr;232(4):F335–F340. doi: 10.1152/ajprenal.1977.232.4.F335. [DOI] [PubMed] [Google Scholar]
  34. Weinberg J. M. The cell biology of ischemic renal injury. Kidney Int. 1991 Mar;39(3):476–500. doi: 10.1038/ki.1991.58. [DOI] [PubMed] [Google Scholar]
  35. Whitford G. M., Taves D. R. Fluoride-induced diuresis: renal-tissue solute concentrations, functional, hemodynamic, and histologic correlates in the rat. Anesthesiology. 1973 Oct;39(4):416–427. [PubMed] [Google Scholar]
  36. Wijkander J., O'Flaherty J. T., Nixon A. B., Wykle R. L. 5-Lipoxygenase products modulate the activity of the 85-kDa phospholipase A2 in human neutrophils. J Biol Chem. 1995 Nov 3;270(44):26543–26549. doi: 10.1074/jbc.270.44.26543. [DOI] [PubMed] [Google Scholar]
  37. Willinger C. C., Moschèn I., Kulmer S., Pfaller W. The effect of sodium fluoride at prophylactic and toxic doses on renal structure and function in the isolated perfused rat kidney. Toxicology. 1995 Jan 6;95(1-3):55–71. doi: 10.1016/0300-483x(94)02875-u. [DOI] [PubMed] [Google Scholar]
  38. Zager R. A., Baltes L. A., Sharma H. M., Jurkowitz M. S. Responses of the ischemic acute renal failure kidney to additional ischemic events. Kidney Int. 1984 Nov;26(5):689–700. doi: 10.1038/ki.1984.204. [DOI] [PubMed] [Google Scholar]
  39. Zager R. A. Gentamicin nephrotoxicity in the setting of acute renal hypoperfusion. Am J Physiol. 1988 Apr;254(4 Pt 2):F574–F581. doi: 10.1152/ajprenal.1988.254.4.F574. [DOI] [PubMed] [Google Scholar]
  40. Zager R. A., Gmur D. J., Bredl C. R., Eng M. J. Temperature effects on ischemic and hypoxic renal proximal tubular injury. Lab Invest. 1991 Jun;64(6):766–776. [PubMed] [Google Scholar]
  41. Zager R. A. Heme protein-induced tubular cytoresistance: expression at the plasma membrane level. Kidney Int. 1995 May;47(5):1336–1345. doi: 10.1038/ki.1995.189. [DOI] [PubMed] [Google Scholar]
  42. Zager R. A., Iwata M., Burkhart K. M., Schimpf B. A. Post-ischemic acute renal failure protects proximal tubules from O2 deprivation injury, possibly by inducing uremia. Kidney Int. 1994 Jun;45(6):1760–1768. doi: 10.1038/ki.1994.229. [DOI] [PubMed] [Google Scholar]
  43. Zager R. A. Myoglobin depletes renal adenine nucleotide pools in the presence and absence of shock. Kidney Int. 1991 Jan;39(1):111–119. doi: 10.1038/ki.1991.14. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES