Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Feb;150(2):417–427.

Beta-amyloid protein-containing inclusions in skeletal muscle of apolipoprotein-E-deficient mice.

T A Robertson 1, N S Dutton 1, R N Martins 1, A D Roses 1, B A Kakulas 1, J M Papadimitriou 1
PMCID: PMC1858271  PMID: 9033257

Abstract

The tibialis anterior muscle and soleus muscle of apolipoprotein-E-deficient mice were examined by light and electron microscopy. By light microscopy, sarcoplasmic inclusions were seen in tibialis anterior muscle and 40% of type 2 myofibers were affected in all animals over 8 months of age. These inclusions reacted for nonspecific esterase, cytochrome oxidase, and myoadenylate deaminase and were also periodic acid Schiff positive and stained basophilic with hematoxylin. Moreover, they reacted immunocytochemically with an antibody specific to fragment 17 to 24 of the published sequence of Alzheimer's cerebrovascular amyloid peptide. Immunoreactivity was lost when the antibody was adsorbed with the appropriate synthetic peptide. Ultrastructurally, the inclusions consisted of tubular arrays and were similar to those observed in human muscle in several pathological conditions. In type 1 myofibers of both tibialis anterior and soleus muscle, however, mitochondrial abnormalities including an increase in their number and size were detected, but tubular aggregates were not seen. These large mitochondria possessed an electron-dense inner chamber with an increased number of tightly packed cristae. The results obtained suggest that in these mice there is a disturbed lipid metabolism in skeletal muscle fibers that manifests itself with an accumulation of phospholipid in the form of sarcoplasmic reticulum tubules in the type 2 fibers and enlarged mitochondria with tightly packed cristae in the type 1 fibers. In addition, beta-amyloid protein was closely associated with the accumulated tubules and vesicles of sarcoplasmic reticulum and may represent dysregulation of amyloid precursor protein metabolism.

Full text

PDF
417

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaaboune M., Villanova M., Festoff B. W., Verdière-Sahuqué M., Hantaï D. Apolipoprotein E expression at neuromuscular junctions in mouse, rat and human skeletal muscle. FEBS Lett. 1994 Sep 5;351(2):246–248. doi: 10.1016/0014-5793(94)00871-x. [DOI] [PubMed] [Google Scholar]
  2. Askanas V., Alvarez R. B., Engel W. K. beta-Amyloid precursor epitopes in muscle fibers of inclusion body myositis. Ann Neurol. 1993 Oct;34(4):551–560. doi: 10.1002/ana.410340408. [DOI] [PubMed] [Google Scholar]
  3. Askanas V., Engel W. K., Alvarez R. B. Enhanced detection of congo-red-positive amyloid deposits in muscle fibers of inclusion body myositis and brain of Alzheimer's disease using fluorescence technique. Neurology. 1993 Jun;43(6):1265–1267. doi: 10.1212/wnl.43.6.1265-a. [DOI] [PubMed] [Google Scholar]
  4. Askanas V., Engel W. K., Alvarez R. B. Light and electron microscopic localization of beta-amyloid protein in muscle biopsies of patients with inclusion-body myositis. Am J Pathol. 1992 Jul;141(1):31–36. [PMC free article] [PubMed] [Google Scholar]
  5. Askanas V., Engel W. K., Alvarez R. B. Strong immunoreactivity of beta-amyloid precursor protein, including the beta-amyloid protein sequence, at human neuromuscular junctions. Neurosci Lett. 1992 Aug 31;143(1-2):96–100. doi: 10.1016/0304-3940(92)90241-x. [DOI] [PubMed] [Google Scholar]
  6. Askanas V., Mirabella M., Engel W. K., Alvarez R. B., Weisgraber K. H. Apolipoprotein E immunoreactive deposits in inclusion-body muscle diseases. Lancet. 1994 Feb 5;343(8893):364–365. doi: 10.1016/s0140-6736(94)91208-4. [DOI] [PubMed] [Google Scholar]
  7. Bergman R. A., Afifi A. K., Dunkle L. M., Johns R. J. Muscle pathology in hypokalemic periodic paralysis with hyperthyroidism. II. A light and electron microscopic study. Johns Hopkins Med J. 1970 Feb;126(2):100–118. [PubMed] [Google Scholar]
  8. Bergman R. A., Johns R. J. Ultrastructural alterations in muscle from patients with myasthenia gravis and Eaton-Lumbert syndrome. Ann N Y Acad Sci. 1971 Sep 15;183:88–122. doi: 10.1111/j.1749-6632.1971.tb30744.x. [DOI] [PubMed] [Google Scholar]
  9. Brumback R. A., Staton R. D., Susag M. E. Exercise-induced pain, stiffness, and tubular aggregation in skeletal muscle. J Neurol Neurosurg Psychiatry. 1981 Mar;44(3):250–254. doi: 10.1136/jnnp.44.3.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caporaso G. L., Takei K., Gandy S. E., Matteoli M., Mundigl O., Greengard P., De Camilli P. Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein. J Neurosci. 1994 May;14(5 Pt 2):3122–3138. doi: 10.1523/JNEUROSCI.14-05-03122.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chui L. A., Neustein H., Munsat T. L. Tubular aggregates in subclinical alcoholic myopathy. Neurology. 1975 May;25(5):405–412. doi: 10.1212/wnl.25.5.405. [DOI] [PubMed] [Google Scholar]
  12. Dobkin B. H., Verity M. A. Familial neuromuscular disease with type 1 fiber hypoplasia, tubular aggregates, cardiomyopathy, and myasthenic features. Neurology. 1978 Nov;28(11):1135–1140. doi: 10.1212/wnl.28.11.1135. [DOI] [PubMed] [Google Scholar]
  13. Duchen L. W. Changes in the electron microscopic structure of slow and fast skeletal muscle fibres of the mouse after the local injection of botulinum toxin. J Neurol Sci. 1971 Sep;14(1):61–74. doi: 10.1016/0022-510x(71)90130-4. [DOI] [PubMed] [Google Scholar]
  14. ENGEL W. K. MITOCHONDRIAL AGGREGATES IN MUSCLE DISEASE. J Histochem Cytochem. 1964 Jan;12:46–48. doi: 10.1177/12.1.46. [DOI] [PubMed] [Google Scholar]
  15. Engel W. K., Bishop D. W., Cunningham G. G. Tubular aggregates in type II muscle fibers: ultrastructural and histochemical correlation. J Ultrastruct Res. 1970 Jun;31(5-6):507–525. doi: 10.1016/s0022-5320(70)90166-8. [DOI] [PubMed] [Google Scholar]
  16. Engel W. K., Bishop D. W., Cunningham G. G. Tubular aggregates in type II muscle fibers: ultrastructural and histochemical correlation. J Ultrastruct Res. 1970 Jun;31(5-6):507–525. doi: 10.1016/s0022-5320(70)90166-8. [DOI] [PubMed] [Google Scholar]
  17. Gilchrist J. M., Ambler M., Agatiello P. Steroid-responsive tubular aggregate myopathy. Muscle Nerve. 1991 Mar;14(3):233–236. doi: 10.1002/mus.880140306. [DOI] [PubMed] [Google Scholar]
  18. Glenner G. G., Wong C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984 May 16;120(3):885–890. doi: 10.1016/s0006-291x(84)80190-4. [DOI] [PubMed] [Google Scholar]
  19. Gold R., Reichmann H. Muscle pathology correlates with permanent weakness in hypokalemic periodic paralysis: a case report. Acta Neuropathol. 1992;84(2):202–206. doi: 10.1007/BF00311396. [DOI] [PubMed] [Google Scholar]
  20. Golde T. E., Estus S., Younkin L. H., Selkoe D. J., Younkin S. G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science. 1992 Feb 7;255(5045):728–730. doi: 10.1126/science.1738847. [DOI] [PubMed] [Google Scholar]
  21. Haass C., Schlossmacher M. G., Hung A. Y., Vigo-Pelfrey C., Mellon A., Ostaszewski B. L., Lieberburg I., Koo E. H., Schenk D., Teplow D. B. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature. 1992 Sep 24;359(6393):322–325. doi: 10.1038/359322a0. [DOI] [PubMed] [Google Scholar]
  22. Hurwitz L. J., Carson A. J., Allen I. V., Fannin T. F., Lyttle J. A., Neill D. W. Clinical, biochemical and histopathological findings in a family with muscular dystrophy. Brain. 1967 Dec;90(4):799–816. doi: 10.1093/brain/90.4.799. [DOI] [PubMed] [Google Scholar]
  23. Imai K., Omura T., Sato R. Biochemical characterization of microsomes isolated from heart and skeletal muscles. J Biochem. 1966 Sep;60(3):274–285. doi: 10.1093/oxfordjournals.jbchem.a128434. [DOI] [PubMed] [Google Scholar]
  24. Kumamoto T., Ueyama H., Watanabe S., Murakami T., Araki S. Effect of denervation on overdevelopment of chloroquine-induced autophagic vacuoles in skeletal muscles. Muscle Nerve. 1993 Aug;16(8):819–826. doi: 10.1002/mus.880160803. [DOI] [PubMed] [Google Scholar]
  25. Kuncl R. W., Pestronk A., Lane J., Alexander E. The MRL +/+ mouse: a new model of tubular aggregates which are gender- and age-related. Acta Neuropathol. 1989;78(6):615–620. doi: 10.1007/BF00691288. [DOI] [PubMed] [Google Scholar]
  26. Lazaro R. P., Fenichel G. M., Kilroy A. W., Saito A., Fleischer S. Cramps, muscle pain, and tubular aggregates. Arch Neurol. 1980 Nov;37(11):715–717. doi: 10.1001/archneur.1980.00500600063013. [DOI] [PubMed] [Google Scholar]
  27. Lewis P. D., Pallis C., Pearse A. G. "Myopathy" with tubular aggregates. J Neurol Sci. 1971 Aug;13(4):381–388. doi: 10.1016/0022-510x(71)90001-3. [DOI] [PubMed] [Google Scholar]
  28. Ma J., Yee A., Brewer H. B., Jr, Das S., Potter H. Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature. 1994 Nov 3;372(6501):92–94. doi: 10.1038/372092a0. [DOI] [PubMed] [Google Scholar]
  29. Mastaglia F. L. Pathological changes in skeletal muscle in acromegaly. Acta Neuropathol. 1973;24(4):273–286. doi: 10.1007/BF00685584. [DOI] [PubMed] [Google Scholar]
  30. Meyers K. R., Gilden D. H., Rinaldi C. F., Hansen J. L. Periodic muscle weakness, normokalemia, and tubular aggregates. Neurology. 1972 Mar;22(3):269–279. doi: 10.1212/wnl.22.3.269. [DOI] [PubMed] [Google Scholar]
  31. Morgan-Hughes J. A., Lecky B. R., Landon D. N., Murray N. M. Alterations in the number and affinity of junctional acetylcholine receptors in a myopathy with tubular aggregates. A newly recognized receptor defect. Brain. 1981 Jun;104(2):279–295. doi: 10.1093/brain/104.2.279. [DOI] [PubMed] [Google Scholar]
  32. Morgan-Hughes J. A., Mair W. G., Lascelles P. T. A disorder of skeletal muscle associated with tubular aggregates. Brain. 1970;93(4):873–880. doi: 10.1093/brain/93.4.873. [DOI] [PubMed] [Google Scholar]
  33. Murakami N., Ihara Y., Nonaka I. Chloroquine treated rat: a possible model for Alzheimer's disease. Muscle Nerve. 1995 Jan;18(1):123–125. doi: 10.1002/mus.880180120. [DOI] [PubMed] [Google Scholar]
  34. Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
  35. Orimo S., Araki M., Ishii H., Ikeda M., Kurosawa T., Arai M., Hiyamuta E. A case of "myopathy with tubular aggregates" with increased muscle fibre sensitivity to caffeine. J Neurol. 1987 Aug;234(6):424–426. doi: 10.1007/BF00314090. [DOI] [PubMed] [Google Scholar]
  36. PRICE H. M., HOWES E. L., Jr, BLUMBERG J. M. ULTRASTRUCTURAL ALTERATIONS IN SKELETAL MUSCLE FIBERS INJURED BY COLD. I. THE ACUTE DEGENERATIVE CHANGES. Lab Invest. 1964 Oct;13:1264–1278. [PubMed] [Google Scholar]
  37. Pierobon-Bormioli S., Armani M., Ringel S. P., Angelini C., Vergani L., Betto R., Salviati G. Familial neuromuscular disease with tubular aggregates. Muscle Nerve. 1985 May;8(4):291–298. doi: 10.1002/mus.880080405. [DOI] [PubMed] [Google Scholar]
  38. Plump A. S., Smith J. D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J. G., Rubin E. M., Breslow J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
  39. Reske-Nielsen E., Haase J., Kelstrup J. Malignant hyperthermia in a family. The ultrastructure of muscle biopsies of healthy members. Acta Pathol Microbiol Scand A. 1975 Nov;83(6):651–660. [PubMed] [Google Scholar]
  40. Richter R. W., Pearson J., Bruun B., Challenor Y. B., Brust J. C., Baden M. M. Neurological complications of addiction to heroin. Bull N Y Acad Med. 1973 Jan;49(1):3–21. [PMC free article] [PubMed] [Google Scholar]
  41. Rohkamm R., Boxler K., Ricker K., Jerusalem F. A dominantly inherited myopathy with excessive tubular aggregates. Neurology. 1983 Mar;33(3):331–336. doi: 10.1212/wnl.33.3.331. [DOI] [PubMed] [Google Scholar]
  42. Rosenberg N. L., Neville H. E., Ringel S. P. Tubular aggregates. Their association with neuromuscular diseases, including the syndrome of myalgias/cramps. Arch Neurol. 1985 Oct;42(10):973–976. doi: 10.1001/archneur.1985.04060090055014. [DOI] [PubMed] [Google Scholar]
  43. Roses A. D. Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. J Neuropathol Exp Neurol. 1994 Sep;53(5):429–437. doi: 10.1097/00005072-199409000-00002. [DOI] [PubMed] [Google Scholar]
  44. Schiaffino S., Severin E., Cantini M., Sartore S. Tubular aggregates induced by anoxia in isolated rat skeletal muscle. Lab Invest. 1977 Sep;37(3):223–228. [PubMed] [Google Scholar]
  45. Shin R. W., Bramblett G. T., Lee V. M., Trojanowski J. Q. Alzheimer disease A68 proteins injected into rat brain induce codeposits of beta-amyloid, ubiquitin, and alpha 1-antichymotrypsin. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6825–6828. doi: 10.1073/pnas.90.14.6825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sipilä I., Simell O., Rapola J., Sainio K., Tuuteri L. Gyrate atrophy of the choroid and retina with hyperornithinemia: tubular aggregates and type 2 fiber atrophy in muscle. Neurology. 1979 Jul;29(7):996–1005. doi: 10.1212/wnl.29.7.996. [DOI] [PubMed] [Google Scholar]
  47. Tsuzuki K., Fukatsu R., Takamaru Y., Fujii N., Takahata N. Potentially amyloidogenic fragment of 50 kDa and intracellular processing of amyloid precursor protein in cells cultured under leupeptin. Brain Res. 1994 Oct 3;659(1-2):213–220. doi: 10.1016/0006-8993(94)90881-8. [DOI] [PubMed] [Google Scholar]
  48. Tsuzuki K., Fukatsu R., Takamaru Y., Yoshida T., Mafune N., Kobayashi K., Fujii N., Takahata N. Co-localization of amyloid-associated proteins with amyloid beta in rat soleus muscle in chloroquine-induced myopathy: a possible model for amyloid beta formation in Alzheimer's disease. Brain Res. 1995 Nov 20;699(2):260–265. doi: 10.1016/0006-8993(95)00917-f. [DOI] [PubMed] [Google Scholar]
  49. Villanova M., Kawai M., Lübke U., Oh S. J., Perry G., Six J., Ceuterick C., Martin J. J., Cras P. Rimmed vacuoles of inclusion body myositis and oculopharyngeal muscular dystrophy contain amyloid precursor protein and lysosomal markers. Brain Res. 1993 Feb 19;603(2):343–347. doi: 10.1016/0006-8993(93)91260-y. [DOI] [PubMed] [Google Scholar]
  50. Wisniewski T., Golabek A., Matsubara E., Ghiso J., Frangione B. Apolipoprotein E: binding to soluble Alzheimer's beta-amyloid. Biochem Biophys Res Commun. 1993 Apr 30;192(2):359–365. doi: 10.1006/bbrc.1993.1423. [DOI] [PubMed] [Google Scholar]
  51. Zhang S. H., Reddick R. L., Piedrahita J. A., Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468–471. doi: 10.1126/science.1411543. [DOI] [PubMed] [Google Scholar]
  52. del Villar Negro A., Merino Angulo J., Rivera Pomar J. M., Aguirre Errasti C. Tubular aggregates in skeletal muscle of chronic alcoholic patients. Acta Neuropathol. 1982;56(4):250–254. doi: 10.1007/BF00691255. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES