Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Feb;150(2):437–443.

Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer's disease is associated with inheritance of APOE4.

K S Montine 1, S J Olson 1, V Amarnath 1, W O Whetsell Jr 1, D G Graham 1, T J Montine 1
PMCID: PMC1858275  PMID: 9033259

Abstract

Cumulative oxidative damage, including lipid peroxidation, is a central component of cellular aging and is thought to play a role in the pathogenesis of late-onset Alzheimer's disease (AD). Lipid peroxidation produces several cytotoxic aldehydes, one of the most potent being 4-hydroxy-2-nonenal (HNE). We have shown previously that HNE is a potent neurotoxin that covalently modifies and cross-links neuronal cytoskeletal protein in neuroglial cultures, suggesting that HNE may contribute to the pathogenesis of AD. In addition to aging, inheritance of the epsilon 4 allele of APOE is the other major risk factor for development of late-onset AD; however, the mechanisms through which aging and apolipoprotein E isoforms may collaborate in the onset or progression of AD are not known. We tested the hypothesis that HNE may yield a particular type of protein modification, pyrrole adduction, and that this may contribute to the pathogenesis of AD. Our data demonstrated that HNE formed pyrrole adducts with protein. Polyclonal antiserum was raised that specifically recognized HNE pyrrole adducts, and immunohistochemical analysis was performed on hippocampus and temporal cortex of 10 patients with histologically verified AD. Pyramidal neuron cytoplasm was immunoreactive in 4 of 4 APOE4 homozygotes, 2 of 3 APOE3/4 heterozygotes, and none of 3 APOE3 homozygotes (P < 0.05). The pattern of staining was highly suggestive of neurofibrillary tangles as the primary immunoreactive structure. These data suggest that differences in neuronal protein modification by HNE may account in part for the APOE-associated stratification of risk for late-onset AD.

Full text

PDF
437

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amarnath V., Amarnath K., Valentine W. M., Eng M. A., Graham D. G. Intermediates in the Paal-Knorr synthesis of pyrroles. 4-Oxoaldehydes. Chem Res Toxicol. 1995 Mar;8(2):234–238. doi: 10.1021/tx00044a008. [DOI] [PubMed] [Google Scholar]
  2. Breitner J. C., Welsh K. A., Gau B. A., McDonald W. M., Steffens D. C., Saunders A. M., Magruder K. M., Helms M. J., Plassman B. L., Folstein M. F. Alzheimer's disease in the National Academy of Sciences-National Research Council Registry of Aging Twin Veterans. III. Detection of cases, longitudinal results, and observations on twin concordance. Arch Neurol. 1995 Aug;52(8):763–771. doi: 10.1001/archneur.1995.00540320035011. [DOI] [PubMed] [Google Scholar]
  3. Castano E. M., Prelli F., Wisniewski T., Golabek A., Kumar R. A., Soto C., Frangione B. Fibrillogenesis in Alzheimer's disease of amyloid beta peptides and apolipoprotein E. Biochem J. 1995 Mar 1;306(Pt 2):599–604. doi: 10.1042/bj3060599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Esterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. doi: 10.1016/0891-5849(91)90192-6. [DOI] [PubMed] [Google Scholar]
  5. Friguet B., Stadtman E. R., Szweda L. I. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J Biol Chem. 1994 Aug 26;269(34):21639–21643. [PubMed] [Google Scholar]
  6. Furuta A., Price D. L., Pardo C. A., Troncoso J. C., Xu Z. S., Taniguchi N., Martin L. J. Localization of superoxide dismutases in Alzheimer's disease and Down's syndrome neocortex and hippocampus. Am J Pathol. 1995 Feb;146(2):357–367. [PMC free article] [PubMed] [Google Scholar]
  7. Good P. F., Werner P., Hsu A., Olanow C. W., Perl D. P. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol. 1996 Jul;149(1):21–28. [PMC free article] [PubMed] [Google Scholar]
  8. Graham D. G., Amarnath V., Valentine W. M., Pyle S. J., Anthony D. C. Pathogenetic studies of hexane and carbon disulfide neurotoxicity. Crit Rev Toxicol. 1995;25(2):91–112. doi: 10.3109/10408449509021609. [DOI] [PubMed] [Google Scholar]
  9. Gsell W., Conrad R., Hickethier M., Sofic E., Frölich L., Wichart I., Jellinger K., Moll G., Ransmayr G., Beckmann H. Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem. 1995 Mar;64(3):1216–1223. doi: 10.1046/j.1471-4159.1995.64031216.x. [DOI] [PubMed] [Google Scholar]
  10. Hayek T., Oiknine J., Brook J. G., Aviram M. Increased plasma and lipoprotein lipid peroxidation in apo E-deficient mice. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1567–1574. doi: 10.1006/bbrc.1994.1883. [DOI] [PubMed] [Google Scholar]
  11. Jirousek M. R., Murthi K. K., Salomon R. G. Electrophilic levuglandin E2-protein adducts bind glycine: a model for protein crosslinking. Prostaglandins. 1990 Aug;40(2):187–203. doi: 10.1016/0090-6980(90)90083-8. [DOI] [PubMed] [Google Scholar]
  12. Khachaturian Z. S. Diagnosis of Alzheimer's disease. Arch Neurol. 1985 Nov;42(11):1097–1105. doi: 10.1001/archneur.1985.04060100083029. [DOI] [PubMed] [Google Scholar]
  13. Ledesma M. D., Bonay P., Colaço C., Avila J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem. 1994 Aug 26;269(34):21614–21619. [PubMed] [Google Scholar]
  14. Lovell M. A., Ehmann W. D., Butler S. M., Markesbery W. R. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology. 1995 Aug;45(8):1594–1601. doi: 10.1212/wnl.45.8.1594. [DOI] [PubMed] [Google Scholar]
  15. Mahley R. W., Nathan B. P., Bellosta S., Pitas R. E. Apolipoprotein E: impact of cytoskeletal stability in neurons and the relationship to Alzheimer's disease. Curr Opin Lipidol. 1995 Apr;6(2):86–91. doi: 10.1097/00041433-199504000-00005. [DOI] [PubMed] [Google Scholar]
  16. Martins R. N., Harper C. G., Stokes G. B., Masters C. L. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress. J Neurochem. 1986 Apr;46(4):1042–1045. doi: 10.1111/j.1471-4159.1986.tb00615.x. [DOI] [PubMed] [Google Scholar]
  17. Mecocci P., MacGarvey U., Beal M. F. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann Neurol. 1994 Nov;36(5):747–751. doi: 10.1002/ana.410360510. [DOI] [PubMed] [Google Scholar]
  18. Mecocci P., MacGarvey U., Kaufman A. E., Koontz D., Shoffner J. M., Wallace D. C., Beal M. F. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993 Oct;34(4):609–616. doi: 10.1002/ana.410340416. [DOI] [PubMed] [Google Scholar]
  19. Mirra S. S., Heyman A., McKeel D., Sumi S. M., Crain B. J., Brownlee L. M., Vogel F. S., Hughes J. P., van Belle G., Berg L. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991 Apr;41(4):479–486. doi: 10.1212/wnl.41.4.479. [DOI] [PubMed] [Google Scholar]
  20. Montine T. J., Amarnath V., Martin M. E., Strittmatter W. J., Graham D. G. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol. 1996 Jan;148(1):89–93. [PMC free article] [PubMed] [Google Scholar]
  21. Montine T. J., Farris D. B., Graham D. G. Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation. J Neuropathol Exp Neurol. 1995 May;54(3):311–319. doi: 10.1097/00005072-199505000-00004. [DOI] [PubMed] [Google Scholar]
  22. Montine T. J., Huang D. Y., Valentine W. M., Amarnath V., Saunders A., Weisgraber K. H., Graham D. G., Strittmatter W. J. Crosslinking of apolipoprotein E by products of lipid peroxidation. J Neuropathol Exp Neurol. 1996 Feb;55(2):202–210. doi: 10.1097/00005072-199602000-00009. [DOI] [PubMed] [Google Scholar]
  23. Pappolla M. A., Omar R. A., Kim K. S., Robakis N. K. Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease. Am J Pathol. 1992 Mar;140(3):621–628. [PMC free article] [PubMed] [Google Scholar]
  24. Peterson C., Goldman J. E. Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2758–2762. doi: 10.1073/pnas.83.8.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roses A. D. Apolipoprotein E is a relevant susceptibility gene that affects the rate of expression of Alzheimer's disease. Neurobiol Aging. 1994;15 (Suppl 2):S165–S167. doi: 10.1016/0197-4580(94)90197-x. [DOI] [PubMed] [Google Scholar]
  26. Roses A. D. On the metabolism of apolipoprotein E and the Alzheimer diseases. Exp Neurol. 1995 Apr;132(2):149–156. doi: 10.1016/0014-4886(95)90019-5. [DOI] [PubMed] [Google Scholar]
  27. Saunders A. M., Strittmatter W. J., Schmechel D., George-Hyslop P. H., Pericak-Vance M. A., Joo S. H., Rosi B. L., Gusella J. F., Crapper-MacLachlan D. R., Alberts M. J. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993 Aug;43(8):1467–1472. doi: 10.1212/wnl.43.8.1467. [DOI] [PubMed] [Google Scholar]
  28. Sayre L. M., Arora P. K., Iyer R. S., Salomon R. G. Pyrrole formation from 4-hydroxynonenal and primary amines. Chem Res Toxicol. 1993 Jan-Feb;6(1):19–22. doi: 10.1021/tx00031a002. [DOI] [PubMed] [Google Scholar]
  29. Selkoe D. J., Ihara Y., Salazar F. J. Alzheimer's disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science. 1982 Mar 5;215(4537):1243–1245. doi: 10.1126/science.6120571. [DOI] [PubMed] [Google Scholar]
  30. Smith C. D., Carney J. M., Starke-Reed P. E., Oliver C. N., Stadtman E. R., Floyd R. A., Markesbery W. R. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10540–10543. doi: 10.1073/pnas.88.23.10540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith M. A., Perry G., Richey P. L., Sayre L. M., Anderson V. E., Beal M. F., Kowall N. Oxidative damage in Alzheimer's. Nature. 1996 Jul 11;382(6587):120–121. doi: 10.1038/382120b0. [DOI] [PubMed] [Google Scholar]
  32. Smith M. A., Sayre L. M., Monnier V. M., Perry G. Radical AGEing in Alzheimer's disease. Trends Neurosci. 1995 Apr;18(4):172–176. doi: 10.1016/0166-2236(95)93897-7. [DOI] [PubMed] [Google Scholar]
  33. Stadtman E. R. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  34. Strittmatter W. J., Roses A. D. Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4725–4727. doi: 10.1073/pnas.92.11.4725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strittmatter W. J., Weisgraber K. H., Goedert M., Saunders A. M., Huang D., Corder E. H., Dong L. M., Jakes R., Alberts M. J., Gilbert J. R. Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol. 1994 Feb;125(2):163–174. doi: 10.1006/exnr.1994.1019. [DOI] [PubMed] [Google Scholar]
  36. Subbarao K. V., Richardson J. S., Ang L. C. Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J Neurochem. 1990 Jul;55(1):342–345. doi: 10.1111/j.1471-4159.1990.tb08858.x. [DOI] [PubMed] [Google Scholar]
  37. Szweda L. I., Uchida K., Tsai L., Stadtman E. R. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem. 1993 Feb 15;268(5):3342–3347. [PubMed] [Google Scholar]
  38. Uchida K., Stadtman E. R. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem. 1993 Mar 25;268(9):6388–6393. [PubMed] [Google Scholar]
  39. Uchida K., Stadtman E. R. Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5611–5615. doi: 10.1073/pnas.89.12.5611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yan S. D., Chen X., Schmidt A. M., Brett J., Godman G., Zou Y. S., Scott C. W., Caputo C., Frappier T., Smith M. A. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7787–7791. doi: 10.1073/pnas.91.16.7787. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES