Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Dec;151(6):1639–1647.

Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors.

E P Henske 1, L L Wessner 1, J Golden 1, B W Scheithauer 1, A O Vortmeyer 1, Z Zhuang 1, A J Klein-Szanto 1, D J Kwiatkowski 1, R S Yeung 1
PMCID: PMC1858354  PMID: 9403714

Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by seizures, mental retardation, and tumors of skin, brain, heart, and kidney. In this study, we focused on two of the most frequent tumors in TSC patients, renal angiomyolipomas and subependymal giant cell astrocytomas (SEGAs). Two questions were addressed. First, is loss of tuberin, the product of the TSC2 gene, seen in both renal and central nervous system tumors from TSC patients? Second, when loss of tuberin occurs, does it affect each of the cell types seen in these tumors? We used a loss of heterozygosity approach to identify tumors from TSC2 patients. We found loss of tuberin immunostaining in the spindle and epithelioid cells but not in the giant cells of six TSC2 SEGAs. We also found loss of tuberin immunostaining in all three cell types (smooth muscle, fat, and vessels) of six TSC2 angiomyolipomas. Chromosome 16p13 loss of heterozygosity occurred in both spindle and epithelioid cells of a SEGA and in smooth muscle and fat but not the vessels of two angiomyolipomas. These results support a two-hit tumor suppressor model for the pathogenesis of SEGAs and angiomyolipomas. The vascular elements of angiomyolipomas and the giant cells of SEGAs may be reactive rather than neoplastic.

Full text

PDF
1639

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein J., Robbins T. O. Renal involvement in tuberous sclerosis. Ann N Y Acad Sci. 1991;615:36–49. doi: 10.1111/j.1749-6632.1991.tb37746.x. [DOI] [PubMed] [Google Scholar]
  2. Bjornsson J., Short M. P., Kwiatkowski D. J., Henske E. P. Tuberous sclerosis-associated renal cell carcinoma. Clinical, pathological, and genetic features. Am J Pathol. 1996 Oct;149(4):1201–1208. [PMC free article] [PubMed] [Google Scholar]
  3. Bonnin J. M., Rubinstein L. J., Papasozomenos S. C., Marangos P. J. Subependymal giant cell astrocytoma. Significance and possible cytogenetic implications of an immunohistochemical study. Acta Neuropathol. 1984;62(3):185–193. doi: 10.1007/BF00691851. [DOI] [PubMed] [Google Scholar]
  4. Carbonara C., Longa L., Grosso E., Borrone C., Garrè M. G., Brisigotti M., Migone N. 9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppressor-like activity also for the TSC1 gene. Hum Mol Genet. 1994 Oct;3(10):1829–1832. doi: 10.1093/hmg/3.10.1829. [DOI] [PubMed] [Google Scholar]
  5. Carbonara C., Longa L., Grosso E., Mazzucco G., Borrone C., Garrè M. L., Brisigotti M., Filippi G., Scabar A., Giannotti A. Apparent preferential loss of heterozygosity at TSC2 over TSC1 chromosomal region in tuberous sclerosis hamartomas. Genes Chromosomes Cancer. 1996 Jan;15(1):18–25. doi: 10.1002/(SICI)1098-2264(199601)15:1<18::AID-GCC3>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  6. Di Rocco C., Iannelli A., Marchese E. On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg. 1995;23(3):115–121. doi: 10.1159/000120947. [DOI] [PubMed] [Google Scholar]
  7. EKER R. Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand. 1954;34(6):554–562. doi: 10.1111/j.1699-0463.1954.tb00301.x. [DOI] [PubMed] [Google Scholar]
  8. Geist R. T., Gutmann D. H. The tuberous sclerosis 2 gene is expressed at high levels in the cerebellum and developing spinal cord. Cell Growth Differ. 1995 Nov;6(11):1477–1483. [PubMed] [Google Scholar]
  9. Gomez M. R. Phenotypes of the tuberous sclerosis complex with a revision of diagnostic criteria. Ann N Y Acad Sci. 1991;615:1–7. doi: 10.1111/j.1749-6632.1991.tb37742.x. [DOI] [PubMed] [Google Scholar]
  10. Green A. J., Johnson P. H., Yates J. R. The tuberous sclerosis gene on chromosome 9q34 acts as a growth suppressor. Hum Mol Genet. 1994 Oct;3(10):1833–1834. doi: 10.1093/hmg/3.10.1833. [DOI] [PubMed] [Google Scholar]
  11. Green A. J., Smith M., Yates J. R. Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet. 1994 Feb;6(2):193–196. doi: 10.1038/ng0294-193. [DOI] [PubMed] [Google Scholar]
  12. Henske E. P., Neumann H. P., Scheithauer B. W., Herbst E. W., Short M. P., Kwiatkowski D. J. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer. 1995 Aug;13(4):295–298. doi: 10.1002/gcc.2870130411. [DOI] [PubMed] [Google Scholar]
  13. Henske E. P., Scheithauer B. W., Short M. P., Wollmann R., Nahmias J., Hornigold N., van Slegtenhorst M., Welsh C. T., Kwiatkowski D. J. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet. 1996 Aug;59(2):400–406. [PMC free article] [PubMed] [Google Scholar]
  14. Hirose T., Scheithauer B. W., Lopes M. B., Gerber H. A., Altermatt H. J., Hukee M. J., VandenBerg S. R., Charlesworth J. C. Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol. 1995;90(4):387–399. doi: 10.1007/BF00315012. [DOI] [PubMed] [Google Scholar]
  15. Huttenlocher P. R., Wollmann R. L. Cellular neuropathology of tuberous sclerosis. Ann N Y Acad Sci. 1991;615:140–148. doi: 10.1111/j.1749-6632.1991.tb37756.x. [DOI] [PubMed] [Google Scholar]
  16. Iwasaki Y., Yoshikawa H., Sasaki M., Sugai K., Suzuki H., Hirayama Y., Sakuragawa N., Arima M., Takashima S., Aoki N. Clinical and immunohistochemical studies of subependymal giant cell astrocytomas associated with tuberous sclerosis. Brain Dev. 1990;12(5):478–481. doi: 10.1016/s0387-7604(12)80211-7. [DOI] [PubMed] [Google Scholar]
  17. Jin F., Wienecke R., Xiao G. H., Maize J. C., Jr, DeClue J. E., Yeung R. S. Suppression of tumorigenicity by the wild-type tuberous sclerosis 2 (Tsc2) gene and its C-terminal region. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9154–9159. doi: 10.1073/pnas.93.17.9154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerfoot C., Wienecke R., Menchine M., Emelin J., Maize J. C., Jr, Welsh C. T., Norman M. G., DeClue J. E., Vinters H. V. Localization of tuberous sclerosis 2 mRNA and its protein product tuberin in normal human brain and in cerebral lesions of patients with tuberous sclerosis. Brain Pathol. 1996 Oct;6(4):367–375. doi: 10.1111/j.1750-3639.1996.tb00866.x. [DOI] [PubMed] [Google Scholar]
  19. Kobayashi T., Hirayama Y., Kobayashi E., Kubo Y., Hino O. A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer. Nat Genet. 1995 Jan;9(1):70–74. doi: 10.1038/ng0195-70. [DOI] [PubMed] [Google Scholar]
  20. Lopes M. B., Altermatt H. J., Scheithauer B. W., Shepherd C. W., VandenBerg S. R. Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. 1996;91(4):368–375. doi: 10.1007/s004010050438. [DOI] [PubMed] [Google Scholar]
  21. Menchine M., Emelin J. K., Mischel P. S., Haag T. A., Norman M. G., Pepkowitz S. H., Welsh C. T., Townsend J. J., Vinters H. V. Tissue and cell-type specific expression of the tuberous sclerosis gene, TSC2, in human tissues. Mod Pathol. 1996 Nov;9(11):1071–1080. [PubMed] [Google Scholar]
  22. Mizuguchi M., Kato M., Yamanouchi H., Ikeda K., Takashima S. Loss of tuberin from cerebral tissues with tuberous sclerosis and astrocytoma. Ann Neurol. 1996 Dec;40(6):941–944. doi: 10.1002/ana.410400621. [DOI] [PubMed] [Google Scholar]
  23. Povey S., Armour J., Farndon P., Haines J. L., Knowles M., Olopade F., Pilz A., White J. A., Kwiatkowski D. J. Report and abstracts of the Third International Workshop on Chromosome 9. Cambridge, United Kingdom, 9-11 April, 1994. Ann Hum Genet. 1994 Jul;58(Pt 3):177–250. doi: 10.1111/j.1469-1809.1994.tb01887.x. [DOI] [PubMed] [Google Scholar]
  24. Sepp T., Yates J. R., Green A. J. Loss of heterozygosity in tuberous sclerosis hamartomas. J Med Genet. 1996 Nov;33(11):962–964. doi: 10.1136/jmg.33.11.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shen Y., Kozman H. M., Thompson A., Phillips H. A., Holman K., Nancarrow J., Lane S., Chen L. Z., Apostolou S., Doggett N. A. A PCR-based genetic linkage map of human chromosome 16. Genomics. 1994 Jul 1;22(1):68–76. doi: 10.1006/geno.1994.1346. [DOI] [PubMed] [Google Scholar]
  26. Shepherd C. W., Gomez M. R., Lie J. T., Crowson C. S. Causes of death in patients with tuberous sclerosis. Mayo Clin Proc. 1991 Aug;66(8):792–796. doi: 10.1016/s0025-6196(12)61196-3. [DOI] [PubMed] [Google Scholar]
  27. Shepherd C. W., Scheithauer B. W., Gomez M. R., Altermatt H. J., Katzmann J. A. Subependymal giant cell astrocytoma: a clinical, pathological, and flow cytometric study. Neurosurgery. 1991 Jun;28(6):864–868. [PubMed] [Google Scholar]
  28. Short M. P. Does tuberin function as a tumor suppressor in the cerebral lesions of tuberous sclerosis? Early observations. Brain Pathol. 1996 Oct;6(4):375–376. doi: 10.1111/j.1750-3639.1996.tb00867.x. [DOI] [PubMed] [Google Scholar]
  29. Stefansson K., Wollmann R. Distribution of glial fibrillary acidic protein in central nervous system lesions of tuberous sclerosis. Acta Neuropathol. 1980;52(2):135–140. doi: 10.1007/BF00688011. [DOI] [PubMed] [Google Scholar]
  30. Stefansson K., Wollmann R. Distribution of the neuronal specific protein, 14-3-2, in central nervous system lesions of tuberous sclerosis. Acta Neuropathol. 1981;53(2):113–117. doi: 10.1007/BF00689991. [DOI] [PubMed] [Google Scholar]
  31. Wienecke R., König A., DeClue J. E. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem. 1995 Jul 7;270(27):16409–16414. doi: 10.1074/jbc.270.27.16409. [DOI] [PubMed] [Google Scholar]
  32. Wienecke R., Maize J. C., Jr, Reed J. A., de Gunzburg J., Yeung R. S., DeClue J. E. Expression of the TSC2 product tuberin and its target Rap1 in normal human tissues. Am J Pathol. 1997 Jan;150(1):43–50. [PMC free article] [PubMed] [Google Scholar]
  33. Xiao G. H., Shoarinejad F., Jin F., Golemis E. A., Yeung R. S. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem. 1997 Mar 7;272(10):6097–6100. doi: 10.1074/jbc.272.10.6097. [DOI] [PubMed] [Google Scholar]
  34. Yeung R. S., Katsetos C. D., Klein-Szanto A. Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol. 1997 Nov;151(5):1477–1486. [PMC free article] [PubMed] [Google Scholar]
  35. Yeung R. S., Xiao G. H., Everitt J. I., Jin F., Walker C. L. Allelic loss at the tuberous sclerosis 2 locus in spontaneous tumors in the Eker rat. Mol Carcinog. 1995 Sep;14(1):28–36. doi: 10.1002/mc.2940140107. [DOI] [PubMed] [Google Scholar]
  36. Yeung R. S., Xiao G. H., Jin F., Lee W. C., Testa J. R., Knudson A. G. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11413–11416. doi: 10.1073/pnas.91.24.11413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Slegtenhorst M., de Hoogt R., Hermans C., Nellist M., Janssen B., Verhoef S., Lindhout D., van den Ouweland A., Halley D., Young J. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997 Aug 8;277(5327):805–808. doi: 10.1126/science.277.5327.805. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES