Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1998 Mar;152(3):729–741.

Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states.

A Pagenstecher 1, A K Stalder 1, C L Kincaid 1, S D Shapiro 1, I L Campbell 1
PMCID: PMC1858390  PMID: 9502415

Abstract

Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of inflammatory disorders of the central nervous system (CNS) whereas the contribution of the major endogenous counter-regulators of MMPs, the tissue inhibitors of the matrix metalloproteinases (TIMPs), is unclear. We investigated the temporal and spatial expression patterns in the CNS of nine MMP genes and three TIMP genes in normal mice, in mice with EAE, and in transgenic mice with astrocyte (glial fibrillary acidic protein)-targeted expression of the cytokines interleukin-3 (macrophage/microglial demyelinating disease), interleukin-6 (neurodegenerative disease), or tumor necrosis factor-alpha (lymphocytic encephalomyelitis). In normal mice, the MMPs MT1-MMP, stromelysin 3, and gelatinase B were expressed at low levels, whereas high expression of TIMP-2 and TIMP-3 was observed predominantly in neurons and in the choroid plexus, respectively. In EAE and the transgenic mice, significant induction or up-regulation of various MMP genes was observed, the pattern of which was somewhat specific for each of the models, and there was significant induction of TIMP-1. In situ localization experiments revealed a dichotomy between MMP expression that was restricted to leukocytes and possibly microglia within inflammatory lesions and TIMP-1 expression that was observed in activated astrocytes circumscribing the lesions. These findings demonstrate specific spatial and temporal regulation in the expression of individual MMP and TIMP genes in the CNS in normal and inflammatory states. The distinct localization of TIMP-1 and MMP expression during CNS inflammation suggests a dynamic state in which the interplay between these gene products may determine both the size and resolution of the destructive inflammatory focus.

Full text

PDF
729

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res. 1993 Nov;28(6 Pt 2):500–510. doi: 10.1111/j.1600-0765.1993.tb02113.x. [DOI] [PubMed] [Google Scholar]
  2. Black R. A., Durie F. H., Otten-Evans C., Miller R., Slack J. L., Lynch D. H., Castner B., Mohler K. M., Gerhart M., Johnson R. S. Relaxed specificity of matrix metalloproteinases (MMPS) and TIMP insensitivity of tumor necrosis factor-alpha (TNF-alpha) production suggest the major TNF-alpha converting enzyme is not an MMP. Biochem Biophys Res Commun. 1996 Aug 14;225(2):400–405. doi: 10.1006/bbrc.1996.1186. [DOI] [PubMed] [Google Scholar]
  3. Busiek D. F., Baragi V., Nehring L. C., Parks W. C., Welgus H. G. Matrilysin expression by human mononuclear phagocytes and its regulation by cytokines and hormones. J Immunol. 1995 Jun 15;154(12):6484–6491. [PubMed] [Google Scholar]
  4. Campbell C. E., Flenniken A. M., Skup D., Williams B. R. Identification of a serum- and phorbol ester-responsive element in the murine tissue inhibitor of metalloproteinase gene. J Biol Chem. 1991 Apr 15;266(11):7199–7206. [PubMed] [Google Scholar]
  5. Campbell I. L., Abraham C. R., Masliah E., Kemper P., Inglis J. D., Oldstone M. B., Mucke L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10061–10065. doi: 10.1073/pnas.90.21.10061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell I. L., Stalder A. K., Chiang C. S., Bellinger R., Heyser C. J., Steffensen S., Masliah E., Powell H. C., Gold L. H., Henriksen S. J. Transgenic models to assess the pathogenic actions of cytokines in the central nervous system. Mol Psychiatry. 1997 Mar;2(2):125–129. doi: 10.1038/sj.mp.4000225. [DOI] [PubMed] [Google Scholar]
  7. Case J. P., Lafyatis R., Kumkumian G. K., Remmers E. F., Wilder R. L. IL-1 regulation of transin/stromelysin transcription in rheumatoid synovial fibroblasts appears to involve two antagonistic transduction pathways, an inhibitory, prostaglandin-dependent pathway mediated by cAMP, and a stimulatory, protein kinase C-dependent pathway. J Immunol. 1990 Dec 1;145(11):3755–3761. [PubMed] [Google Scholar]
  8. Cañete Soler R., Gui Y. H., Linask K. K., Muschel R. J. MMP-9 (gelatinase B) mRNA is expressed during mouse neurogenesis and may be associated with vascularization. Brain Res Dev Brain Res. 1995 Aug 28;88(1):37–52. doi: 10.1016/0165-3806(95)00079-s. [DOI] [PubMed] [Google Scholar]
  9. Chandler S., Coates R., Gearing A., Lury J., Wells G., Bone E. Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett. 1995 Dec 15;201(3):223–226. doi: 10.1016/0304-3940(95)12173-0. [DOI] [PubMed] [Google Scholar]
  10. Chandler S., Cossins J., Lury J., Wells G. Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochem Biophys Res Commun. 1996 Nov 12;228(2):421–429. doi: 10.1006/bbrc.1996.1677. [DOI] [PubMed] [Google Scholar]
  11. Chiang C. S., Powell H. C., Gold L. H., Samimi A., Campbell I. L. Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. J Clin Invest. 1996 Mar 15;97(6):1512–1524. doi: 10.1172/JCI118574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clements J. M., Cossins J. A., Wells G. M., Corkill D. J., Helfrich K., Wood L. M., Pigott R., Stabler G., Ward G. A., Gearing A. J. Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol. 1997 Apr;74(1-2):85–94. doi: 10.1016/s0165-5728(96)00210-x. [DOI] [PubMed] [Google Scholar]
  13. Cuzner M. L., Gveric D., Strand C., Loughlin A. J., Paemen L., Opdenakker G., Newcombe J. The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol. 1996 Dec;55(12):1194–1204. doi: 10.1097/00005072-199612000-00002. [DOI] [PubMed] [Google Scholar]
  14. Del Bigio M. R., Jacque C. M. Localization of proteinase expression in the developing rabbit brain. Brain Res Dev Brain Res. 1995 May 26;86(1-2):345–347. doi: 10.1016/0165-3806(95)00023-7. [DOI] [PubMed] [Google Scholar]
  15. Dudov K. P., Perry R. P. The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene. Cell. 1984 Jun;37(2):457–468. doi: 10.1016/0092-8674(84)90376-3. [DOI] [PubMed] [Google Scholar]
  16. Fernández-Resa P., Mira E., Quesada A. R. Enhanced detection of casein zymography of matrix metalloproteinases. Anal Biochem. 1995 Jan 1;224(1):434–435. doi: 10.1006/abio.1995.1063. [DOI] [PubMed] [Google Scholar]
  17. Fridman R., Toth M., Peña D., Mobashery S. Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res. 1995 Jun 15;55(12):2548–2555. [PubMed] [Google Scholar]
  18. Gijbels K., Galardy R. E., Steinman L. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest. 1994 Dec;94(6):2177–2182. doi: 10.1172/JCI117578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gijbels K., Masure S., Carton H., Opdenakker G. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol. 1992 Nov;41(1):29–34. doi: 10.1016/0165-5728(92)90192-n. [DOI] [PubMed] [Google Scholar]
  20. Gijbels K., Proost P., Masure S., Carton H., Billiau A., Opdenakker G. Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J Neurosci Res. 1993 Nov 1;36(4):432–440. doi: 10.1002/jnr.490360409. [DOI] [PubMed] [Google Scholar]
  21. Gilat D., Cahalon L., Hershkoviz R., Lider O. Interplay of T cells and cytokines in the context of enzymatically modified extracellular matrix. Immunol Today. 1996 Jan;17(1):16–20. doi: 10.1016/0167-5699(96)80563-9. [DOI] [PubMed] [Google Scholar]
  22. Gomis-Rüth F. X., Maskos K., Betz M., Bergner A., Huber R., Suzuki K., Yoshida N., Nagase H., Brew K., Bourenkov G. P. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997 Sep 4;389(6646):77–81. doi: 10.1038/37995. [DOI] [PubMed] [Google Scholar]
  23. Gottschall P. E., Deb S. Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation. 1996 Mar-Jun;3(2-3):69–75. doi: 10.1159/000097229. [DOI] [PubMed] [Google Scholar]
  24. Gunn C. A., Richards M. K., Linington C. The immune response to myelin proteolipid protein in the Lewis rat: identification of the immunodominant B cell epitope. J Neuroimmunol. 1990 May;27(2-3):155–162. doi: 10.1016/0165-5728(90)90065-u. [DOI] [PubMed] [Google Scholar]
  25. Hayakawa T., Yamashita K., Ohuchi E., Shinagawa A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci. 1994 Sep;107(Pt 9):2373–2379. doi: 10.1242/jcs.107.9.2373. [DOI] [PubMed] [Google Scholar]
  26. Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992 Feb 17;298(1):29–32. doi: 10.1016/0014-5793(92)80015-9. [DOI] [PubMed] [Google Scholar]
  27. Hewson A. K., Smith T., Leonard J. P., Cuzner M. L. Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31-9790. Inflamm Res. 1995 Aug;44(8):345–349. doi: 10.1007/BF01796266. [DOI] [PubMed] [Google Scholar]
  28. Huhtala P., Humphries M. J., McCarthy J. B., Tremble P. M., Werb Z., Damsky C. H. Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol. 1995 May;129(3):867–879. doi: 10.1083/jcb.129.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ito A., Sato T., Iga T., Mori Y. Tumor necrosis factor bifunctionally regulates matrix metalloproteinases and tissue inhibitor of metalloproteinases (TIMP) production by human fibroblasts. FEBS Lett. 1990 Aug 20;269(1):93–95. doi: 10.1016/0014-5793(90)81127-a. [DOI] [PubMed] [Google Scholar]
  30. Johnatty R. N., Taub D. D., Reeder S. P., Turcovski-Corrales S. M., Cottam D. W., Stephenson T. J., Rees R. C. Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol. 1997 Mar 1;158(5):2327–2333. [PubMed] [Google Scholar]
  31. Leco K. J., Apte S. S., Taniguchi G. T., Hawkes S. P., Khokha R., Schultz G. A., Edwards D. R. Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett. 1997 Jan 20;401(2-3):213–217. doi: 10.1016/s0014-5793(96)01474-3. [DOI] [PubMed] [Google Scholar]
  32. Leco K. J., Khokha R., Pavloff N., Hawkes S. P., Edwards D. R. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994 Mar 25;269(12):9352–9360. [PubMed] [Google Scholar]
  33. Levi E., Fridman R., Miao H. Q., Ma Y. S., Yayon A., Vlodavsky I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7069–7074. doi: 10.1073/pnas.93.14.7069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lyons J. G., Birkedal-Hansen B., Pierson M. C., Whitelock J. M., Birkedal-Hansen H. Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of M(r) 95,000 type IV collagenase/gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. J Biol Chem. 1993 Sep 5;268(25):19143–19151. [PubMed] [Google Scholar]
  35. Maeda A., Sobel R. A. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol. 1996 Mar;55(3):300–309. doi: 10.1097/00005072-199603000-00005. [DOI] [PubMed] [Google Scholar]
  36. Martin D. C., Rüther U., Sanchez-Sweatman O. H., Orr F. W., Khokha R. Inhibition of SV40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. Oncogene. 1996 Aug 1;13(3):569–576. [PubMed] [Google Scholar]
  37. Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
  38. Miyazaki K., Hasegawa M., Funahashi K., Umeda M. A metalloproteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature. 1993 Apr 29;362(6423):839–841. doi: 10.1038/362839a0. [DOI] [PubMed] [Google Scholar]
  39. Mohanam S., Wang S. W., Rayford A., Yamamoto M., Sawaya R., Nakajima M., Liotta L. A., Nicolson G. L., Stetler-Stevenson W. G., Rao J. S. Expression of tissue inhibitors of metalloproteinases: negative regulators of human glioblastoma invasion in vivo. Clin Exp Metastasis. 1995 Jan;13(1):57–62. doi: 10.1007/BF00144019. [DOI] [PubMed] [Google Scholar]
  40. Murphy G., Willenbrock F., Crabbe T., O'Shea M., Ward R., Atkinson S., O'Connell J., Docherty A. Regulation of matrix metalloproteinase activity. Ann N Y Acad Sci. 1994 Sep 6;732:31–41. doi: 10.1111/j.1749-6632.1994.tb24722.x. [DOI] [PubMed] [Google Scholar]
  41. Nakagawa T., Kubota T., Kabuto M., Sato K., Kawano H., Hayakawa T., Okada Y. Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg. 1994 Jul;81(1):69–77. doi: 10.3171/jns.1994.81.1.0069. [DOI] [PubMed] [Google Scholar]
  42. Nemeth J. A., Rafe A., Steiner M., Goolsby C. L. TIMP-2 growth-stimulatory activity: a concentration- and cell type-specific response in the presence of insulin. Exp Cell Res. 1996 Apr 10;224(1):110–115. doi: 10.1006/excr.1996.0117. [DOI] [PubMed] [Google Scholar]
  43. Pagenstecher A., Stalder A. K., Campbell I. L. RNAse protection assays for the simultaneous and semiquantitative analysis of multiple murine matrix metalloproteinase (MMP) and MMP inhibitor mRNAs. J Immunol Methods. 1997 Aug 7;206(1-2):1–9. doi: 10.1016/s0022-1759(97)00077-x. [DOI] [PubMed] [Google Scholar]
  44. Peress N., Perillo E., Zucker S. Localization of tissue inhibitor of matrix metalloproteinases in Alzheimer's disease and normal brain. J Neuropathol Exp Neurol. 1995 Jan;54(1):16–22. doi: 10.1097/00005072-199501000-00002. [DOI] [PubMed] [Google Scholar]
  45. Romanic A. M., Madri J. A. Extracellular matrix-degrading proteinases in the nervous system. Brain Pathol. 1994 Apr;4(2):145–156. doi: 10.1111/j.1750-3639.1994.tb00825.x. [DOI] [PubMed] [Google Scholar]
  46. Rosenberg G. A., Kornfeld M., Estrada E., Kelley R. O., Liotta L. A., Stetler-Stevenson W. G. TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res. 1992 Apr 3;576(2):203–207. doi: 10.1016/0006-8993(92)90681-x. [DOI] [PubMed] [Google Scholar]
  47. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  48. Schorpp M., Mattei M. G., Herr I., Gack S., Schaper J., Angel P. Structural organization and chromosomal localization of the mouse collagenase type I gene. Biochem J. 1995 May 15;308(Pt 1):211–217. doi: 10.1042/bj3080211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shapiro S. D. Elastolytic metalloproteinases produced by human mononuclear phagocytes. Potential roles in destructive lung disease. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S160–S164. doi: 10.1164/ajrccm/150.6_Pt_2.S160. [DOI] [PubMed] [Google Scholar]
  50. Shapiro S. D., Fliszar C. J., Broekelmann T. J., Mecham R. P., Senior R. M., Welgus H. G. Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP). J Biol Chem. 1995 Mar 17;270(11):6351–6356. doi: 10.1074/jbc.270.11.6351. [DOI] [PubMed] [Google Scholar]
  51. Shapiro S. D., Griffin G. L., Gilbert D. J., Jenkins N. A., Copeland N. G., Welgus H. G., Senior R. M., Ley T. J. Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J Biol Chem. 1992 Mar 5;267(7):4664–4671. [PubMed] [Google Scholar]
  52. Sommer N., Löschmann P. A., Northoff G. H., Weller M., Steinbrecher A., Steinbach J. P., Lichtenfels R., Meyermann R., Riethmüller A., Fontana A. The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalomyelitis. Nat Med. 1995 Mar;1(3):244–248. doi: 10.1038/nm0395-244. [DOI] [PubMed] [Google Scholar]
  53. Sriram S., Rodriguez M. Indictment of the microglia as the villain in multiple sclerosis. Neurology. 1997 Feb;48(2):464–470. doi: 10.1212/wnl.48.2.464. [DOI] [PubMed] [Google Scholar]
  54. Stalder A. K., Campbell I. L. Simultaneous analysis of multiple cytokine receptor mRNAs by RNase protection assay in LPS-induced endotoxemia. Lymphokine Cytokine Res. 1994 Apr;13(2):107–112. [PubMed] [Google Scholar]
  55. Stetler-Stevenson W. G. Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol. 1996 May;148(5):1345–1350. [PMC free article] [PubMed] [Google Scholar]
  56. Stetler-Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989 Oct 15;264(29):17374–17378. [PubMed] [Google Scholar]
  57. Tremble P., Damsky C. H., Werb Z. Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals. J Cell Biol. 1995 Jun;129(6):1707–1720. doi: 10.1083/jcb.129.6.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Vranka J. A., Johnson E., Zhu X., Shepardson A., Alexander J. P., Bradley J. M., Wirtz M. K., Weleber R. G., Klein M. L., Acott T. S. Discrete expression and distribution pattern of TIMP-3 in the human retina and choroid. Curr Eye Res. 1997 Feb;16(2):102–110. doi: 10.1076/ceyr.16.2.102.5086. [DOI] [PubMed] [Google Scholar]
  59. Woessner J. F., Jr The family of matrix metalloproteinases. Ann N Y Acad Sci. 1994 Sep 6;732:11–21. doi: 10.1111/j.1749-6632.1994.tb24720.x. [DOI] [PubMed] [Google Scholar]
  60. Yamada T., Yoshiyama Y., Sato H., Seiki M., Shinagawa A., Takahashi M. White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol. 1995;90(5):421–424. doi: 10.1007/BF00294800. [DOI] [PubMed] [Google Scholar]
  61. Yokoo T., Kitamura M. Dual regulation of IL-1 beta-mediated matrix metalloproteinase-9 expression in mesangial cells by NF-kappa B and AP-1. Am J Physiol. 1996 Jan;270(1 Pt 2):F123–F130. doi: 10.1152/ajprenal.1996.270.1.F123. [DOI] [PubMed] [Google Scholar]
  62. van der Zee E., Everts V., Beertsen W. Cytokine-induced endogenous procollagenase stored in the extracellular matrix of soft connective tissue results in a burst of collagen breakdown following its activation. J Periodontal Res. 1996 Oct;31(7):483–488. doi: 10.1111/j.1600-0765.1996.tb01413.x. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES