Abstract
Platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) is associated with angiogenesis and the progression of human breast and ovarian cancers. The aim of this study was to obtain information about the possible mechanisms of PD-ECGF/TP activity in an established three-dimensional model of angiogenesis. The plan was to study the effects of the enzyme, substrate, products, and further metabolites on the formation and rate of microvessel growth from cultured segments of rat aorta in serum-free media. The end-points were the number and length of microvessels compared with controls after 4, 7, 11, and 14 days in culture. Thymidine (10 to 1000 mumol/L), thymidine-5'-monophosphate (1000 mumol/L), and 2'-deoxy-D-ribose-1-phosphate (1000 mumol/L) inhibited the number of microvessels produced. Conversely PD-ECGF/TP (50 to 100 ng/ml) and beta-amino-iso-butyric acid (1000 mumol/L--a metabolite of thymine) had a significant stimulatory effect (P < 0.05, P < 0.01, P < 0.001 respectively on culture day 11). PD-ECGF (10 ng/ml), beta-amino-iso-butyric acid (1000 mumol/L), and 2-deoxy-D-ribose (100 to 1000 mumol/L) significantly (P < 0.001, P < 0.01, P < 0.01, respectively) stimulated microvessel elongation by day 11. We conclude that PD-ECGF/TP may affect angiogenesis by changing the relative concentrations of pyrimidine-based compounds and their metabolites in interstitial fluid surrounding endothelial cells. Drugs that inhibit PD-ECGF/TP activity may therefore delay abnormal angiogenesis and the progression of various cancers.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton G. J., Ponting C. P., Spraggon G., Finnis C., Sleep D. Human platelet-derived endothelial cell growth factor is homologous to Escherichia coli thymidine phosphorylase. Protein Sci. 1992 May;1(5):688–690. doi: 10.1002/pro.5560010514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berlin R. D., Oliver J. M. Membrane transport of purine and pyrimidine bases and nucleosides in animal cells. Int Rev Cytol. 1975;42:287–336. doi: 10.1016/s0074-7696(08)60983-3. [DOI] [PubMed] [Google Scholar]
- Diglio C. A., Grammas P., Giacomelli F., Wiener J. Angiogenesis in rat aorta ring explant cultures. Lab Invest. 1989 Apr;60(4):523–531. [PubMed] [Google Scholar]
- Finnis C., Dodsworth N., Pollitt C. E., Carr G., Sleep D. Thymidine phosphorylase activity of platelet-derived endothelial cell growth factor is responsible for endothelial cell mitogenicity. Eur J Biochem. 1993 Feb 15;212(1):201–210. doi: 10.1111/j.1432-1033.1993.tb17651.x. [DOI] [PubMed] [Google Scholar]
- Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995 Jan;1(1):27–31. doi: 10.1038/nm0195-27. [DOI] [PubMed] [Google Scholar]
- Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
- Furukawa T., Yoshimura A., Sumizawa T., Haraguchi M., Akiyama S., Fukui K., Ishizawa M., Yamada Y. Angiogenic factor. Nature. 1992 Apr 23;356(6371):668–668. doi: 10.1038/356668a0. [DOI] [PubMed] [Google Scholar]
- Gruber B. L., Marchese M. J., Kew R. Angiogenic factors stimulate mast-cell migration. Blood. 1995 Oct 1;86(7):2488–2493. [PubMed] [Google Scholar]
- Haraguchi M., Miyadera K., Uemura K., Sumizawa T., Furukawa T., Yamada K., Akiyama S., Yamada Y. Angiogenic activity of enzymes. Nature. 1994 Mar 17;368(6468):198–198. doi: 10.1038/368198a0. [DOI] [PubMed] [Google Scholar]
- Ishikawa F., Miyazono K., Hellman U., Drexler H., Wernstedt C., Hagiwara K., Usuki K., Takaku F., Risau W., Heldin C. H. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature. 1989 Apr 13;338(6216):557–562. doi: 10.1038/338557a0. [DOI] [PubMed] [Google Scholar]
- Jaggers D. C., Collins W. P., Milligan S. R. Potent inhibitory effects of steroids in an in vitro model of angiogenesis. J Endocrinol. 1996 Sep;150(3):457–464. doi: 10.1677/joe.0.1500457. [DOI] [PubMed] [Google Scholar]
- Maca R. D., Fry G. L., Hoak J. C., Loh P. T. The effects of intact platelets on cultured human endothelial cells. Thromb Res. 1977 Dec;11(6):715–727. doi: 10.1016/0049-3848(77)90100-1. [DOI] [PubMed] [Google Scholar]
- Miyadera K., Sumizawa T., Haraguchi M., Yoshida H., Konstanty W., Yamada Y., Akiyama S. Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res. 1995 Apr 15;55(8):1687–1690. [PubMed] [Google Scholar]
- Miyazono K., Usuki K., Heldin C. H. Platelet-derived endothelial cell growth factor. Prog Growth Factor Res. 1991;3(3):207–217. doi: 10.1016/0955-2235(91)90007-q. [DOI] [PubMed] [Google Scholar]
- Moghaddam A., Bicknell R. Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry. 1992 Dec 8;31(48):12141–12146. doi: 10.1021/bi00163a024. [DOI] [PubMed] [Google Scholar]
- Moghaddam A., Zhang H. T., Fan T. P., Hu D. E., Lees V. C., Turley H., Fox S. B., Gatter K. C., Harris A. L., Bicknell R. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):998–1002. doi: 10.1073/pnas.92.4.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris P. B., Ellis M. N., Swain J. L. Angiogenic potency of nucleotide metabolites: potential role in ischemia-induced vascular growth. J Mol Cell Cardiol. 1989 Apr;21(4):351–358. doi: 10.1016/0022-2828(89)90645-7. [DOI] [PubMed] [Google Scholar]
- Nicosia R. F., Bonanno E., Smith M. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol. 1993 Mar;154(3):654–661. doi: 10.1002/jcp.1041540325. [DOI] [PubMed] [Google Scholar]
- Nicosia R. F., Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest. 1990 Jul;63(1):115–122. [PubMed] [Google Scholar]
- Nicosia R. F., Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol. 1990 Feb;26(2):119–128. doi: 10.1007/BF02624102. [DOI] [PubMed] [Google Scholar]
- O'Dwyer P. J., King S. A., Hoth D. F., Leyland-Jones B. Role of thymidine in biochemical modulation: a review. Cancer Res. 1987 Aug 1;47(15):3911–3919. [PubMed] [Google Scholar]
- Reynolds K., Farzaneh F., Collins W. P., Campbell S., Bourne T. H., Lawton F., Moghaddam A., Harris A. L., Bicknell R. Association of ovarian malignancy with expression of platelet-derived endothelial cell growth factor. J Natl Cancer Inst. 1994 Aug 17;86(16):1234–1238. doi: 10.1093/jnci/86.16.1234. [DOI] [PubMed] [Google Scholar]
- Shaw T., Smillie R. H., MacPhee D. G. The role of blood platelets in nucleoside metabolism: assay, cellular location and significance of thymidine phosphorylase in human blood. Mutat Res. 1988 Jul-Aug;200(1-2):99–116. doi: 10.1016/0027-5107(88)90074-7. [DOI] [PubMed] [Google Scholar]
- Sumizawa T., Furukawa T., Haraguchi M., Yoshimura A., Takeyasu A., Ishizawa M., Yamada Y., Akiyama S. Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. J Biochem. 1993 Jul;114(1):9–14. doi: 10.1093/oxfordjournals.jbchem.a124146. [DOI] [PubMed] [Google Scholar]
- Usuki K., Saras J., Waltenberger J., Miyazono K., Pierce G., Thomason A., Heldin C. H. Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochem Biophys Res Commun. 1992 May 15;184(3):1311–1316. doi: 10.1016/s0006-291x(05)80025-7. [DOI] [PubMed] [Google Scholar]
- Wohlhueter R. M., Marz R., Plagemann P. G. Thymidine transport in cultured mammalian cells. Kinetic analysis, temperature dependence and specificity of the transport system. Biochim Biophys Acta. 1979 May 17;553(2):262–283. doi: 10.1016/0005-2736(79)90231-1. [DOI] [PubMed] [Google Scholar]