Abstract
Fluorescence in situ hybridization studies using non-breakpoint DNA probes were performed to detect the X;18 translocation on 4-microm sections of synovial sarcoma from paraffin blocks. This was done by using commercially available, large target unique sequence DNA probes for regions of the X chromosome short-arm and the 18 chromosome long-arm together with centromere probes for the alternate chromosomes. We determined that such probe combinations could detect the presence of the diagnostic X;18 translocation in interphase cells. Spatial association of dual color signals from the X centromere and the 18 unique sequence probe, as well as between an 18 centromere and the X unique sequence probe, was seen in a significantly higher percentage of synovial sarcoma cells (81.1% +/- 7.7%, confidence interval 95%) than in control nonsynovial soft tissue sarcomas (14.7% +/- 8.3%) and control peripheral blood lymphocytes (5.6% +/- 0.6%). The observed spatial association supports the use of this strategy to detect the X;18 translocation in synovial sarcoma and suggests that this technique could be applied in the diagnosis of other types of tumors with characteristic translocations when histopathological findings are inconclusive. This study is the first report describing the use of nonbreakpoint unique sequence probes for detecting translocations in tumors on paraffin-embedded slides.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arden K. C., Anderson M. J., Finckenstein F. G., Czekay S., Cavenee W. K. Detection of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma using the reverse transcriptase-polymerase chain reaction. Genes Chromosomes Cancer. 1996 Aug;16(4):254–260. doi: 10.1002/(SICI)1098-2264(199608)16:4<254::AID-GCC5>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
- Bridge J. A. Cytogenetics and experimental models. Curr Opin Oncol. 1996 Jul;8(4):284–288. doi: 10.1097/00001622-199607000-00004. [DOI] [PubMed] [Google Scholar]
- Cohen M. M., Rosenblum-Vos L. S., Prabhakar G. Human cytogenetics. A current overview. Am J Dis Child. 1993 Nov;147(11):1159–1166. doi: 10.1001/archpedi.1993.02160350033005. [DOI] [PubMed] [Google Scholar]
- Helliwell T. R., King A. P., Raraty M., Wittram C., Morris A. I., Myint S., Hershman M. J. Biphasic synovial sarcoma in the small intestinal mesentery. Cancer. 1995 Jun 15;75(12):2862–2866. doi: 10.1002/1097-0142(19950615)75:12<2862::aid-cncr2820751211>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Hirakawa N., Naka T., Yamamoto I., Fukuda T., Tsuneyoshi M. Overexpression of bcl-2 protein in synovial sarcoma: a comparative study of other soft tissue spindle cell sarcomas and an additional analysis by fluorescence in situ hybridization. Hum Pathol. 1996 Oct;27(10):1060–1065. doi: 10.1016/s0046-8177(96)90284-1. [DOI] [PubMed] [Google Scholar]
- Lee W., Han K., Harris C. P., Shim S., Kim S., Meisner L. F. Use of FISH to detect chromosomal translocations and deletions. Analysis of chromosome rearrangement in synovial sarcoma cells from paraffin-embedded specimens. Am J Pathol. 1993 Jul;143(1):15–19. [PMC free article] [PubMed] [Google Scholar]
- Mandahl N., Heim S., Arheden K., Rydholm A., Willén H., Mitelman F. Multiple karyotypic rearrangements, including t(X;18)(p11;q11), in a fibrosarcoma. Cancer Genet Cytogenet. 1988 Feb;30(2):323–327. doi: 10.1016/0165-4608(88)90202-6. [DOI] [PubMed] [Google Scholar]
- Mandahl N., Heim S., Arheden K., Rydholm A., Willén H., Mitelman F. Separate karyotypic features in a local recurrence and a metastasis of a fibrosarcoma. Cancer Genet Cytogenet. 1989 Jan;37(1):139–140. doi: 10.1016/0165-4608(89)90083-6. [DOI] [PubMed] [Google Scholar]
- Mandahl N., Heim S., Willén H., Rydholm A., Eneroth M., Nilbert M., Kreicbergs A., Mitelman F. Characteristic karyotypic anomalies identify subtypes of malignant fibrous histiocytoma. Genes Chromosomes Cancer. 1989 Sep;1(1):9–14. doi: 10.1002/gcc.2870010104. [DOI] [PubMed] [Google Scholar]
- McManus A. P., O'Reilly M. A., Jones K. P., Gusterson B. A., Mitchell C. D., Pinkerton C. R., Shipley J. M. Interphase fluorescence in situ hybridization detection of t(2;13)(q35;q14) in alveolar rhabdomyosarcoma--a diagnostic tool in minimally invasive biopsies. J Pathol. 1996 Apr;178(4):410–414. doi: 10.1002/(SICI)1096-9896(199604)178:4<410::AID-PATH508>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- Nagao K., Gomyo Y., Ito H., Yamamoto K., Yoshida H. A case report of synovial sarcoma with translocation (X;18). Application of fluorescence in situ hybridization to paraffin-embedded tissue. Virchows Arch. 1995;426(5):519–522. doi: 10.1007/BF00193176. [DOI] [PubMed] [Google Scholar]
- Nagao K., Ito H., Yoshida H. Chromosomal translocation t(X;18) in human synovial sarcomas analyzed by fluorescence in situ hybridization using paraffin-embedded tissue. Am J Pathol. 1996 Feb;148(2):601–609. [PMC free article] [PubMed] [Google Scholar]
- Nagao K., Ito H., Yoshida H., Minamizaki T., Furuse K., Yoshikawa T., Ushigome S. Chromosomal rearrangement t(11;22) in extraskeletal Ewing's sarcoma and primitive neuroectodermal tumour analysed by fluorescence in situ hybridization using paraffin-embedded tissue. J Pathol. 1997 Jan;181(1):62–66. doi: 10.1002/(SICI)1096-9896(199701)181:1<62::AID-PATH687>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Poteat H. T., Corson J. M., Fletcher J. A. Detection of chromosome 18 rearrangement in synovial sarcoma by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1995 Oct 1;84(1):76–81. doi: 10.1016/0165-4608(95)00090-9. [DOI] [PubMed] [Google Scholar]
- Reichmuth C., Markus M. A., Hillemanns M., Atkinson M. J., Unni K. K., Saretzki G., Höfler H. The diagnostic potential of the chromosome translocation t(2;13) in rhabdomyosarcoma: a Pcr study of fresh-frozen and paraffin-embedded tumour samples. J Pathol. 1996 Sep;180(1):50–57. doi: 10.1002/(SICI)1096-9896(199609)180:1<50::AID-PATH629>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Sheaff M., McManus A., Scheimberg I., Paris A., Shipley J., Baithun S. Primitive neuroectodermal tumor of the kidney confirmed by fluorescence in situ hybridization. Am J Surg Pathol. 1997 Apr;21(4):461–468. doi: 10.1097/00000478-199704000-00013. [DOI] [PubMed] [Google Scholar]
- Shipley J., Crew J., Birdsall S., Gill S., Clark J., Fisher C., Kelsey A., Nojima T., Sonobe H., Cooper C. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma. Am J Pathol. 1996 Feb;148(2):559–567. [PMC free article] [PubMed] [Google Scholar]
- Sozzi G., Minoletti F., Miozzo M., Sard L., Musso K., Azzarelli A., Pierotti M. A., Pilotti S. Relevance of cytogenetic and fluorescent in situ hybridization analyses in the clinical assessment of soft tissue sarcoma. Hum Pathol. 1997 Feb;28(2):134–142. doi: 10.1016/s0046-8177(97)90096-4. [DOI] [PubMed] [Google Scholar]
- Tkachuk D. C., Westbrook C. A., Andreeff M., Donlon T. A., Cleary M. L., Suryanarayan K., Homge M., Redner A., Gray J., Pinkel D. Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science. 1990 Oct 26;250(4980):559–562. doi: 10.1126/science.2237408. [DOI] [PubMed] [Google Scholar]
- Turc-Carel C., Dal Cin P., Limon J., Rao U., Li F. P., Corson J. M., Zimmerman R., Parry D. M., Cowan J. M., Sandberg A. A. Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1981–1985. doi: 10.1073/pnas.84.7.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Leeuw B., Suijkerbuijk R. F., Balemans M., Sinke R. J., de Jong B., Molenaar W. M., Meloni A. M., Sandberg A. A., Geraghty M., Hofker M. Sublocalization of the synovial sarcoma-associated t(X;18) chromosomal breakpoint in Xp11.2 using cosmid cloning and fluorescence in situ hybridization. Oncogene. 1993 Jun;8(6):1457–1463. [PubMed] [Google Scholar]