Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Nov;96(5):2126–2132. doi: 10.1172/JCI118266

Urea inhibits NaK2Cl cotransport in human erythrocytes.

J Lim 1, C Gasson 1, D M Kaji 1
PMCID: PMC185861  PMID: 7593597

Abstract

We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself.

Full text

PDF
2126

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adragna N. C., Tosteson D. C. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells. J Membr Biol. 1984;78(1):43–52. doi: 10.1007/BF01872531. [DOI] [PubMed] [Google Scholar]
  2. Brahm J. Urea permeability of human red cells. J Gen Physiol. 1983 Jul;82(1):1–23. doi: 10.1085/jgp.82.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breitwieser G. E., Altamirano A. A., Russell J. M. Osmotic stimulation of Na(+)-K(+)-Cl- cotransport in squid giant axon is [Cl-]i dependent. Am J Physiol. 1990 Apr;258(4 Pt 1):C749–C753. doi: 10.1152/ajpcell.1990.258.4.C749. [DOI] [PubMed] [Google Scholar]
  4. Cheng J. T., Kahn T., Kaji D. M. Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure. J Clin Invest. 1984 Nov;74(5):1811–1820. doi: 10.1172/JCI111600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chipperfield A. R. Influence of loop diuretics and anions on passive potassium influx into human red cells. J Physiol. 1985 Dec;369:61–77. doi: 10.1113/jphysiol.1985.sp015888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  7. Corry D. B., Tuck M. L., Brickman A. S., Yanagawa N., Lee D. B. Sodium transport in red blood cells from dialyzed uremic patients. Kidney Int. 1986 Jun;29(6):1197–1202. doi: 10.1038/ki.1986.127. [DOI] [PubMed] [Google Scholar]
  8. Duhm J., Göbel B. O. Role of the furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo. J Membr Biol. 1984;77(3):243–254. doi: 10.1007/BF01870572. [DOI] [PubMed] [Google Scholar]
  9. Dunham P. B. Effects of urea on K-Cl cotransport in sheep red blood cells: evidence for two signals of swelling. Am J Physiol. 1995 Apr;268(4 Pt 1):C1026–C1032. doi: 10.1152/ajpcell.1995.268.4.C1026. [DOI] [PubMed] [Google Scholar]
  10. Dunham P. B., Ellory J. C. Stimulation of the sodium-potassium pump by trypsin in low potassium type erythrocytes of goats. J Physiol. 1980 Apr;301:25–37. doi: 10.1113/jphysiol.1980.sp013185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunham P. B., Stewart G. W., Ellory J. C. Chloride-activated passive potassium transport in human erythrocytes. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1711–1715. doi: 10.1073/pnas.77.3.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freedman J. C., Hoffman J. F. Ionic and osmotic equilibria of human red blood cells treated with nystatin. J Gen Physiol. 1979 Aug;74(2):157–185. doi: 10.1085/jgp.74.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GROLLMAN E. F., GROLLMAN A. Toxicity of urea and its role in the pathogenesis of uremia. J Clin Invest. 1959 May;38(5):749–754. doi: 10.1172/JCI103855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haas M., Schmidt W. F., 3rd, McManus T. J. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport. J Gen Physiol. 1982 Jul;80(1):125–147. doi: 10.1085/jgp.80.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haas M. The Na-K-Cl cotransporters. Am J Physiol. 1994 Oct;267(4 Pt 1):C869–C885. doi: 10.1152/ajpcell.1994.267.4.C869. [DOI] [PubMed] [Google Scholar]
  16. Johnson W. J., Hagge W. W., Wagoner R. D., Dinapoli R. P., Rosevear J. W. Effects of urea loading in patients with far-advanced renal failure. Mayo Clin Proc. 1972 Jan;47(1):21–29. [PubMed] [Google Scholar]
  17. Kaji D. M., Gasson C. Urea activation of K-Cl transport in human erythrocytes. Am J Physiol. 1995 Apr;268(4 Pt 1):C1018–C1025. doi: 10.1152/ajpcell.1995.268.4.C1018. [DOI] [PubMed] [Google Scholar]
  18. Kaji D., Kahn T. Kinetics of Cl-dependent K influx in human erythrocytes with and without external Na: effect of NEM. Am J Physiol. 1985 Nov;249(5 Pt 1):C490–C496. doi: 10.1152/ajpcell.1985.249.5.C490. [DOI] [PubMed] [Google Scholar]
  19. Kaji D., Thomas K. Na+-K+ pump in chronic renal failure. Am J Physiol. 1987 May;252(5 Pt 2):F785–F793. doi: 10.1152/ajprenal.1987.252.5.F785. [DOI] [PubMed] [Google Scholar]
  20. Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kracke G. R., Dunham P. B. Effect of membrane potential on furosemide-inhibitable sodium influxes in human red blood cells. J Membr Biol. 1987;98(2):117–124. doi: 10.1007/BF01872124. [DOI] [PubMed] [Google Scholar]
  22. Lauf P. K., Perkins C. M., Adragna N. C. Cell volume and metabolic dependence of NEM-activated K+-Cl- flux in human red blood cells. Am J Physiol. 1985 Jul;249(1 Pt 1):C124–C128. doi: 10.1152/ajpcell.1985.249.1.C124. [DOI] [PubMed] [Google Scholar]
  23. Lytle C., Forbush B., 3rd The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem. 1992 Dec 15;267(35):25438–25443. [PubMed] [Google Scholar]
  24. Macey R. I. Transport of water and urea in red blood cells. Am J Physiol. 1984 Mar;246(3 Pt 1):C195–C203. doi: 10.1152/ajpcell.1984.246.3.C195. [DOI] [PubMed] [Google Scholar]
  25. Mairbäurl H., Hoffman J. F. Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system. J Gen Physiol. 1992 May;99(5):721–746. doi: 10.1085/jgp.99.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Minton A. P., Colclasure G. C., Parker J. C. Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10504–10506. doi: 10.1073/pnas.89.21.10504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Neill W. C., Mikkelsen R. B. Furosemide-sensitive Na+ and K+ transport and human erythrocyte volume. Biochim Biophys Acta. 1987 Jan 26;896(2):196–202. doi: 10.1016/0005-2736(87)90180-5. [DOI] [PubMed] [Google Scholar]
  28. Parker J. C. In defense of cell volume? Am J Physiol. 1993 Nov;265(5 Pt 1):C1191–C1200. doi: 10.1152/ajpcell.1993.265.5.C1191. [DOI] [PubMed] [Google Scholar]
  29. Parker J. C. Urea alters set point volume for K-Cl cotransport, Na-H exchange, and Ca-Na exchange in dog red blood cells. Am J Physiol. 1993 Aug;265(2 Pt 1):C447–C452. doi: 10.1152/ajpcell.1993.265.2.C447. [DOI] [PubMed] [Google Scholar]
  30. RAJAGOPALAN K. V., FRIDOVICH I., HANDLER P. Competitive inhibition of enzyme activity by urea. J Biol Chem. 1961 Apr;236:1059–1065. [PubMed] [Google Scholar]
  31. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  32. Zimmerman S. B., Harrison B. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1871–1875. doi: 10.1073/pnas.84.7.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES