Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Nov;96(5):2297–2303. doi: 10.1172/JCI118285

Gender differences in regional fatty acid metabolism before and after meal ingestion.

M D Jensen 1
PMCID: PMC185880  PMID: 7593616

Abstract

These studies were conducted to determine whether men and women differ with regards to their overnight postabsorptive (basal) and postprandial fatty acid kinetics. Systemic oleate turnover ([9,10(3)H]oleate) was measured before and after the consumption of a mixed meal. Leg and splanchnic free fatty acid (FFA) uptake and release were measured, allowing the calculation of upper-body subcutaneous FFA release. RESULTS: basal oleate flux was virtually identical in men and women (3.0 +/- 3 versus 2.9 +/- 0.4 mumol.kg FFM-1.min-1), however, oleate Ra suppressed more in women than in men following meal ingestion (0.5 +/- 0.1 versus 0.8 +/- 0.1 mumol.kg FFM-1.min-1, P < 0.05). The fractional contribution of basal, regional FFA release to total FFA flux was not significantly different between men and women. In contrast, oleate release by upper-body subcutaneous adipose tissue was significantly greater (30 +/- 5 vs 8 +/- 3 mumol/min, respectively, P < 0.01) in men than in women during the meal nadir of FFA flux, whereas splanchnic oleate release was a greater percentage (39 +/- 7% vs 20 +/- 3%, respectively, P < 0.05) of nadir oleate Ra in women than in men. Thus, normal weight men and women differ significantly in the postprandial regulation of adipose tissue lipolysis in that men's upper-body subcutaneous adipose tissue is more resistant to the antilipolytic effects of meal ingestion. Differential regulation of regional adipose tissue lipolysis could contribute to the gender based differences in body fat distribution.

Full text

PDF
2297

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arner P., Bolinder J., Engfeldt P., Hellmér J., Ostman J. Influence of obesity on the antilipolytic effect of insulin in isolated human fat cells obtained before and after glucose ingestion. J Clin Invest. 1984 Mar;73(3):673–680. doi: 10.1172/JCI111259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arner P., Bolinder J., Ostman J. Marked increase in insulin sensitivity of human fat cells 1 hour after glucose ingestion. J Clin Invest. 1983 Mar;71(3):709–714. doi: 10.1172/JCI110817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basso L. V., Havel R. J. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J Clin Invest. 1970 Mar;49(3):537–547. doi: 10.1172/JCI106264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boden G., Jadali F., White J., Liang Y., Mozzoli M., Chen X., Coleman E., Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991 Sep;88(3):960–966. doi: 10.1172/JCI115399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrne C. D., Wareham N. J., Brown D. C., Clark P. M., Cox L. J., Day N. E., Palmer C. R., Wang T. W., Williams D. R., Hales C. N. Hypertriglyceridaemia in subjects with normal and abnormal glucose tolerance: relative contributions of insulin secretion, insulin resistance and suppression of plasma non-esterified fatty acids. Diabetologia. 1994 Sep;37(9):889–896. doi: 10.1007/BF00400944. [DOI] [PubMed] [Google Scholar]
  6. Christie W. W. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985 Apr;26(4):507–512. [PubMed] [Google Scholar]
  7. Coppack S. W., Fisher R. M., Gibbons G. F., Humphreys S. M., McDonough M. J., Potts J. L., Frayn K. N. Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clin Sci (Lond) 1990 Oct;79(4):339–348. doi: 10.1042/cs0790339. [DOI] [PubMed] [Google Scholar]
  8. Evans D. J., Hoffmann R. G., Kalkhoff R. K., Kissebah A. H. Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism. 1984 Jan;33(1):68–75. doi: 10.1016/0026-0495(84)90164-1. [DOI] [PubMed] [Google Scholar]
  9. Groop L. C., Bonadonna R. C., Simonson D. C., Petrides A. S., Shank M., DeFronzo R. A. Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity. Am J Physiol. 1992 Jul;263(1 Pt 1):E79–E84. doi: 10.1152/ajpendo.1992.263.1.E79. [DOI] [PubMed] [Google Scholar]
  10. Hagenfeldt L., Wahren J., Pernow B., Räf L. Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest. 1972 Sep;51(9):2324–2330. doi: 10.1172/JCI107043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Havel R. J., Kane J. P., Balasse E. O., Segel N., Basso L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest. 1970 Nov;49(11):2017–2035. doi: 10.1172/JCI106422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hennes M. M., Shrago E., Kissebah A. H. Receptor and postreceptor effects of free fatty acids (FFA) on hepatocyte insulin dynamics. Int J Obes. 1990 Oct;14(10):831–841. [PubMed] [Google Scholar]
  13. Humphreys S. M., Fisher R. M., Frayn K. N. Micro-method for measurement of sub-nanomole amounts of triacylglycerol. Ann Clin Biochem. 1990 Nov;27(Pt 6):597–598. doi: 10.1177/000456329002700613. [DOI] [PubMed] [Google Scholar]
  14. Jensen M. D., Haymond M. W., Rizza R. A., Cryer P. E., Miles J. M. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest. 1989 Apr;83(4):1168–1173. doi: 10.1172/JCI113997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jensen M. D., Heiling V., Miles J. M. Measurement of non-steady-state free fatty acid turnover. Am J Physiol. 1990 Jan;258(1 Pt 1):E103–E108. doi: 10.1152/ajpendo.1990.258.1.E103. [DOI] [PubMed] [Google Scholar]
  16. Jensen M. D., Kanaley J. A., Roust L. R., O'Brien P. C., Braun J. S., Dunn W. L., Wahner H. W. Assessment of body composition with use of dual-energy x-ray absorptiometry: evaluation and comparison with other methods. Mayo Clin Proc. 1993 Sep;68(9):867–873. doi: 10.1016/s0025-6196(12)60695-8. [DOI] [PubMed] [Google Scholar]
  17. Jensen M. D., Rogers P. J., Ellman M. G., Miles J. M. Choice of infusion-sampling mode for tracer studies of free fatty acid metabolism. Am J Physiol. 1988 May;254(5 Pt 1):E562–E565. doi: 10.1152/ajpendo.1988.254.5.E562. [DOI] [PubMed] [Google Scholar]
  18. Kelley D. E., Mokan M., Simoneau J. A., Mandarino L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993 Jul;92(1):91–98. doi: 10.1172/JCI116603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kissebah A. H., Alfarsi S., Adams P. W., Wynn V. Role of insulin resistance in adipose tissue and liver in the pathogenesis of endogenous hypertriglyceridaemia in man. Diabetologia. 1976 Dec;12(6):563–571. doi: 10.1007/BF01220632. [DOI] [PubMed] [Google Scholar]
  20. Kvist H., Chowdhury B., Grangård U., Tylén U., Sjöström L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr. 1988 Dec;48(6):1351–1361. doi: 10.1093/ajcn/48.6.1351. [DOI] [PubMed] [Google Scholar]
  21. Lemieux S., Prud'homme D., Bouchard C., Tremblay A., Després J. P. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr. 1993 Oct;58(4):463–467. doi: 10.1093/ajcn/58.4.463. [DOI] [PubMed] [Google Scholar]
  22. Martin M. L., Jensen M. D. Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest. 1991 Aug;88(2):609–613. doi: 10.1172/JCI115345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKeigue P. M., Laws A., Chen Y. D., Marmot M. G., Reaven G. M. Relation of plasma triglyceride and apoB levels to insulin-mediated suppression of nonesterified fatty acids. Possible explanation for sex differences in lipoprotein pattern. Arterioscler Thromb. 1993 Aug;13(8):1187–1192. doi: 10.1161/01.atv.13.8.1187. [DOI] [PubMed] [Google Scholar]
  24. Miles J. M., Ellman M. G., McClean K. L., Jensen M. D. Validation of a new method for determination of free fatty acid turnover. Am J Physiol. 1987 Mar;252(3 Pt 1):E431–E438. doi: 10.1152/ajpendo.1987.252.3.E431. [DOI] [PubMed] [Google Scholar]
  25. Mårin P., Andersson B., Ottosson M., Olbe L., Chowdhury B., Kvist H., Holm G., Sjöström L., Björntorp P. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992 Nov;41(11):1242–1248. doi: 10.1016/0026-0495(92)90016-4. [DOI] [PubMed] [Google Scholar]
  26. Mårin P., Rebuffé-Scrive M., Björntorp P. Uptake of triglyceride fatty acids in adipose tissue in vivo in man. Eur J Clin Invest. 1990 Apr;20(2):158–165. doi: 10.1111/j.1365-2362.1990.tb02263.x. [DOI] [PubMed] [Google Scholar]
  27. Nuutila P., Knuuti M. J., Mäki M., Laine H., Ruotsalainen U., Teräs M., Haaparanta M., Solin O., Yki-Järvinen H. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes. 1995 Jan;44(1):31–36. doi: 10.2337/diab.44.1.31. [DOI] [PubMed] [Google Scholar]
  28. Pedersen O., Hjøllund E., Sørensen N. S. Insulin receptor binding and insulin action in human fat cells: effects of obesity and fasting. Metabolism. 1982 Sep;31(9):884–895. doi: 10.1016/0026-0495(82)90177-9. [DOI] [PubMed] [Google Scholar]
  29. Pørksen N., Munn S., Ferguson D., O'Brien T., Veldhuis J., Butler P. Coordinate pulsatile insulin secretion by chronic intraportally transplanted islets in the isolated perfused rat liver. J Clin Invest. 1994 Jul;94(1):219–227. doi: 10.1172/JCI117310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rebuffé-Scrive M., Lönnroth P., Mårin P., Wesslau C., Björntorp P., Smith U. Regional adipose tissue metabolism in men and postmenopausal women. Int J Obes. 1987;11(4):347–355. [PubMed] [Google Scholar]
  31. Ross R., Shaw K. D., Martel Y., de Guise J., Avruch L. Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Clin Nutr. 1993 Apr;57(4):470–475. doi: 10.1093/ajcn/57.4.470. [DOI] [PubMed] [Google Scholar]
  32. Roust L. R., Jensen M. D. Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes. 1993 Nov;42(11):1567–1573. doi: 10.2337/diab.42.11.1567. [DOI] [PubMed] [Google Scholar]
  33. Saloranta C., Franssila-Kallunki A., Ekstrand A., Taskinen M. R., Groop L. Modulation of hepatic glucose production by non-esterified fatty acids in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1991 Jun;34(6):409–415. doi: 10.1007/BF00403179. [DOI] [PubMed] [Google Scholar]
  34. Smith U., Hammersten J., Björntorp P., Kral J. G. Regional differences and effect of weight reduction on human fat cell metabolism. Eur J Clin Invest. 1979 Oct;9(5):327–332. doi: 10.1111/j.1365-2362.1979.tb00892.x. [DOI] [PubMed] [Google Scholar]
  35. Wahrenberg H., Lönnqvist F., Arner P. Mechanisms underlying regional differences in lipolysis in human adipose tissue. J Clin Invest. 1989 Aug;84(2):458–467. doi: 10.1172/JCI114187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES