Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Nov;96(5):2373–2379. doi: 10.1172/JCI118294

Fluid absorption in isolated perfused colonic crypts.

S K Singh 1, H J Binder 1, W F Boron 1, J P Geibel 1
PMCID: PMC185889  PMID: 7593625

Abstract

A spatial segregation of ion transport processes between crypt and surface epithelial cells is well-accepted and integrated into physiological and pathophysiological paradigms of small and large intestinal function: Absorptive processes are believed to be located in surface (and villous) cells, whereas secretory processes are believed to be present in crypt cells. Validation of this model requires direct determination of fluid movement in intestinal crypts. This study describes the adaptation of techniques from renal tubule microperfusion to hand-dissect and perfuse single, isolated crypts from rat distal colon to measure directly fluid movement. Morphologic analyses of the isolated crypt preparation revealed no extraepithelial cellular elements derived from the lamina propria, including myofibroblasts. In the basal state, crypts exhibited net fluid absorption (mean net fluid movement = 0.34 +/- 0.01 nl.mm-1.min-1), which was Na+ and partially HCO3- dependent. Addition of 1 mM dibutyryl-cyclic AMP, 60 nM vasoactive intestinal peptide, or 0.1 mM acetylcholine to the bath (serosal) solution reversibly induced net fluid secretion (net fluid movement approximately -0.35 +/- 0.01 nl.mm-1.min-1). These observations permit speculation that absorption is a constitutive transport function in crypt cells and that secretion by crypt cells is regulated by one or more neurohumoral agonists that are released in situ from lamina propria cells. The functional, intact polarized crypt described here that both absorbs and secretes will permit future studies that dissect the mechanisms that govern fluid and electrolyte movement in the colonic crypt.

Full text

PDF
2373

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berschneider H. M., Powell D. W. Fibroblasts modulate intestinal secretory responses to inflammatory mediators. J Clin Invest. 1992 Feb;89(2):484–489. doi: 10.1172/JCI115610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Billich C. O., Levitan R. Effects of sodium concentration and osmolality on water and electrolyte absorption form the intact human colon. J Clin Invest. 1969 Jul;48(7):1336–1347. doi: 10.1172/JCI106100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binder H. J., Stange G., Murer H., Stieger B., Hauri H. P. Sodium-proton exchange in colon brush-border membranes. Am J Physiol. 1986 Sep;251(3 Pt 1):G382–G390. doi: 10.1152/ajpgi.1986.251.3.G382. [DOI] [PubMed] [Google Scholar]
  4. Bleakman D., Naftalin R. J. Hypertonic fluid absorption from rabbit descending colon in vitro. Am J Physiol. 1990 Mar;258(3 Pt 1):G377–G390. doi: 10.1152/ajpgi.1990.258.3.G377. [DOI] [PubMed] [Google Scholar]
  5. Bookstein C., DePaoli A. M., Xie Y., Niu P., Musch M. W., Rao M. C., Chang E. B. Na+/H+ exchangers, NHE-1 and NHE-3, of rat intestine. Expression and localization. J Clin Invest. 1994 Jan;93(1):106–113. doi: 10.1172/JCI116933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  7. Böhme M., Diener M., Rummel W. Calcium- and cyclic-AMP-mediated secretory responses in isolated colonic crypts. Pflugers Arch. 1991 Sep;419(2):144–151. doi: 10.1007/BF00373000. [DOI] [PubMed] [Google Scholar]
  8. CURRAN P. F., SCHWARTZ G. F. Na, Cl, and water transport by rat colon. J Gen Physiol. 1960 Jan;43:555–571. doi: 10.1085/jgp.43.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cho J. H., Musch M. W., DePaoli A. M., Bookstein C. M., Xie Y., Burant C. F., Rao M. C., Chang E. B. Glucocorticoids regulate Na+/H+ exchange expression and activity in region- and tissue-specific manner. Am J Physiol. 1994 Sep;267(3 Pt 1):C796–C803. doi: 10.1152/ajpcell.1994.267.3.C796. [DOI] [PubMed] [Google Scholar]
  10. Dantzler W. H., Bentley S. K. Fluid absorption with and without sodium in isolated perfused snake proximal tubules. Am J Physiol. 1978 Jan;234(1):F68–F79. doi: 10.1152/ajprenal.1978.234.1.F68. [DOI] [PubMed] [Google Scholar]
  11. Dharmsathaphorn K., Harms V., Yamashiro D. J., Hughes R. J., Binder H. J., Wright E. M. Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J Clin Invest. 1983 Jan;71(1):27–35. doi: 10.1172/JCI110748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  13. Dharmsathaphorn K., Pandol S. J. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest. 1986 Feb;77(2):348–354. doi: 10.1172/JCI112311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Diener M., Helmle-Kolb C., Murer H., Scharrer E. Effect of short-chain fatty acids on cell volume and intracellular pH in rat distal colon. Pflugers Arch. 1993 Aug;424(3-4):216–223. doi: 10.1007/BF00384345. [DOI] [PubMed] [Google Scholar]
  15. Geibel J., Giebisch G., Boron W. F. Effects of acetate on luminal acidification processes in the S3 segment of the rabbit proximal tubule. Am J Physiol. 1989 Oct;257(4 Pt 2):F586–F594. doi: 10.1152/ajprenal.1989.257.4.F586. [DOI] [PubMed] [Google Scholar]
  16. Greger R., Hampel W. A modified system for in vitro perfusion of isolated renal tubules. Pflugers Arch. 1981 Jan;389(2):175–176. doi: 10.1007/BF00582110. [DOI] [PubMed] [Google Scholar]
  17. Isaacs P. E., Corbett C. L., Riley A. K., Hawker P. C., Turnberg L. A. In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport. J Clin Invest. 1976 Sep;58(3):535–542. doi: 10.1172/JCI108498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knickelbein R. G., Aronson P. S., Dobbins J. W. Membrane distribution of sodium-hydrogen and chloride-bicarbonate exchangers in crypt and villus cell membranes from rabbit ileum. J Clin Invest. 1988 Dec;82(6):2158–2163. doi: 10.1172/JCI113838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Köckerling A., Fromm M. Origin of cAMP-dependent Cl- secretion from both crypts and surface epithelia of rat intestine. Am J Physiol. 1993 May;264(5 Pt 1):C1294–C1301. doi: 10.1152/ajpcell.1993.264.5.C1294. [DOI] [PubMed] [Google Scholar]
  20. Lomax R. B., McNicholas C. M., Lombès M., Sandle G. I. Aldosterone-induced apical Na+ and K+ conductances are located predominantly in surface cells in rat distal colon. Am J Physiol. 1994 Jan;266(1 Pt 1):G71–G82. doi: 10.1152/ajpgi.1994.266.1.G71. [DOI] [PubMed] [Google Scholar]
  21. McCabe R. D., Dharmsathaphorn K. Mechanism of VIP-stimulated chloride secretion by intestinal epithelial cells. Ann N Y Acad Sci. 1988;527:326–345. doi: 10.1111/j.1749-6632.1988.tb26990.x. [DOI] [PubMed] [Google Scholar]
  22. McGonagle T. J., Serebro H. A., Iber F. L., Bayless T. M., Hendrix T. R. Time of onset of action of cholera toxin in dog and rabbit. Gastroenterology. 1969 Jul;57(1):5–8. [PubMed] [Google Scholar]
  23. McKinney T. D., Burg M. B. Biocarbonate and fluid absorption by renal proximal straight tubules. Kidney Int. 1977 Jul;12(1):1–8. doi: 10.1038/ki.1977.72. [DOI] [PubMed] [Google Scholar]
  24. Naftalin R. J., Pedley K. C. Video enhanced imaging of the fluorescent Na+ probe SBFI indicates that colonic crypts absorb fluid by generating a hypertonic interstitial fluid. FEBS Lett. 1990 Jan 29;260(2):187–194. doi: 10.1016/0014-5793(90)80100-w. [DOI] [PubMed] [Google Scholar]
  25. Nakhoul N. L., Chen L. K., Boron W. F. Effect of basolateral CO2/HCO3- on intracellular pH regulation in the rabbit S3 proximal tubule. J Gen Physiol. 1993 Dec;102(6):1171–1205. doi: 10.1085/jgp.102.6.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Orlowski J., Kandasamy R. A., Shull G. E. Molecular cloning of putative members of the Na/H exchanger gene family. cDNA cloning, deduced amino acid sequence, and mRNA tissue expression of the rat Na/H exchanger NHE-1 and two structurally related proteins. J Biol Chem. 1992 May 5;267(13):9331–9339. [PubMed] [Google Scholar]
  27. Pedley K. C., Naftalin R. J. Evidence from fluorescence microscopy and comparative studies that rat, ovine and bovine colonic crypts are absorptive. J Physiol. 1993 Jan;460:525–547. doi: 10.1113/jphysiol.1993.sp019485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Racusen L. C., Binder H. J. Alteration of large intestinal electrolyte transport by vasoactive intestinal polypeptide in the rat. Gastroenterology. 1977 Oct;73(4 Pt 1):790–796. [PubMed] [Google Scholar]
  29. Rajendran V. M., Binder H. J. Characterization of Na-H exchange in apical membrane vesicles of rat colon. J Biol Chem. 1990 May 25;265(15):8408–8414. [PubMed] [Google Scholar]
  30. Rajendran V. M., Geibel J., Binder H. J. Chloride-dependent Na-H exchange. A novel mechanism of sodium transport in colonic crypts. J Biol Chem. 1995 May 12;270(19):11051–11054. doi: 10.1074/jbc.270.19.11051. [DOI] [PubMed] [Google Scholar]
  31. Rennick B. R. Renal tubule transport of organic cations. Am J Physiol. 1981 Feb;240(2):F83–F89. doi: 10.1152/ajprenal.1981.240.2.F83. [DOI] [PubMed] [Google Scholar]
  32. Richman P. I., Tilly R., Jass J. R., Bodmer W. F. Colonic pericrypt sheath cells: characterisation of cell type with new monoclonal antibody. J Clin Pathol. 1987 Jun;40(6):593–600. doi: 10.1136/jcp.40.6.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Serebro H. A., Iber F. L., Yardley J. H., Hendrix T. R. Inhibition of cholera toxin action in the rabbit by cycloheximide. Gastroenterology. 1969 Mar;56(3):506–511. [PubMed] [Google Scholar]
  34. Stewart C. P., Turnberg L. A. A microelectrode study of responses to secretagogues by epithelial cells on villus and crypt of rat small intestine. Am J Physiol. 1989 Sep;257(3 Pt 1):G334–G343. doi: 10.1152/ajpgi.1989.257.3.G334. [DOI] [PubMed] [Google Scholar]
  35. Sundaram U., Knickelbein R. G., Dobbins J. W. Mechanism of intestinal secretion: effect of cyclic AMP on rabbit ileal crypt and villus cells. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6249–6253. doi: 10.1073/pnas.88.14.6249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Teleky B., Hamilton G., Cosentini E., Bischof G., Riegler M., Koperna T., Feil W., Schiessel R., Wenzl E. Intracellular pH regulation of human colonic crypt cells. Pflugers Arch. 1994 Feb;426(3-4):267–275. doi: 10.1007/BF00374781. [DOI] [PubMed] [Google Scholar]
  37. Tse C. M., Brant S. R., Walker M. S., Pouyssegur J., Donowitz M. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem. 1992 May 5;267(13):9340–9346. [PubMed] [Google Scholar]
  38. Van Why S. K., Hildebrandt F., Ardito T., Mann A. S., Siegel N. J., Kashgarian M. Induction and intracellular localization of HSP-72 after renal ischemia. Am J Physiol. 1992 Nov;263(5 Pt 2):F769–F775. doi: 10.1152/ajprenal.1992.263.5.F769. [DOI] [PubMed] [Google Scholar]
  39. Waisbren S. J., Geibel J. P., Modlin I. M., Boron W. F. Unusual permeability properties of gastric gland cells. Nature. 1994 Mar 24;368(6469):332–335. doi: 10.1038/368332a0. [DOI] [PubMed] [Google Scholar]
  40. Wang Z., Orlowski J., Shull G. E. Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na/H exchanger. J Biol Chem. 1993 Jun 5;268(16):11925–11928. [PubMed] [Google Scholar]
  41. Welsh M. J., Smith P. L., Fromm M., Frizzell R. A. Crypts are the site of intestinal fluid and electrolyte secretion. Science. 1982 Dec 17;218(4578):1219–1221. doi: 10.1126/science.6293054. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES