Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Nov;96(5):2469–2477. doi: 10.1172/JCI118305

Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase.

J Hou 1, H Kato 1, R A Cohen 1, A V Chobanian 1, P Brecher 1
PMCID: PMC185900  PMID: 7593636

Abstract

These studies were performed to determine if the effects of angiotensin II infusion on the development of cardiac fibrosis could be modified by the chronic inhibition of nitric oxide synthase activity. NG-nitro-L-arginine-methyl ester (L-NAME) was administered to adult Wistar rats in drinking water (40 mg/kg per d). Although blood pressure was maintained at hypertensive levels after 2 wk, cardiac hypertrophy or fibrosis did not occur. Angiotensin II, given for 3 d at a dose which induced little or no blood pressure elevation and minimal if any fibrosis, caused significant fibrosis when given to a rat pretreated for 2 wk with L-NAME. This marked fibrosis did not occur if angiotensin II was given shortly after L-NAME treatment was begun or briefly after discontinuation of L-NAME. The fibrosis that occurred with combined treatment was characterized by increased immunodetectable fibronectin, the presence of inflammatory cells within interstitial and perivascular regions, and increased steady state mRNA levels for matrix genes and atrial natriuretic protein. The data indicated a regulatory role for nitric oxide in modulating the angiotensin II-induced cardiac fibrosis and suggest a potentially important autocrine or paracrine role for nitric oxide in fibroblast proliferation.

Full text

PDF
2469

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnal J. F., Warin L., Michel J. B. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest. 1992 Aug;90(2):647–652. doi: 10.1172/JCI115906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnal J. F., el Amrani A. I., Chatellier G., Ménard J., Michel J. B. Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension. 1993 Sep;22(3):380–387. doi: 10.1161/01.hyp.22.3.380. [DOI] [PubMed] [Google Scholar]
  3. Baker K. M., Booz G. W., Dostal D. E. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol. 1992;54:227–241. doi: 10.1146/annurev.ph.54.030192.001303. [DOI] [PubMed] [Google Scholar]
  4. Balligand J. L., Ungureanu D., Kelly R. A., Kobzik L., Pimental D., Michel T., Smith T. W. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest. 1993 May;91(5):2314–2319. doi: 10.1172/JCI116461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bank N., Aynedjian H. S., Khan G. A. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension. 1994 Sep;24(3):322–328. doi: 10.1161/01.hyp.24.3.322. [DOI] [PubMed] [Google Scholar]
  6. Cayatte A. J., Palacino J. J., Horten K., Cohen R. A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994 May;14(5):753–759. doi: 10.1161/01.atv.14.5.753. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Crabos M., Roth M., Hahn A. W., Erne P. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J Clin Invest. 1994 Jun;93(6):2372–2378. doi: 10.1172/JCI117243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crawford D. C., Chobanian A. V., Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994 Apr;74(4):727–739. doi: 10.1161/01.res.74.4.727. [DOI] [PubMed] [Google Scholar]
  10. Dananberg J., Sider R. S., Grekin R. J. Sustained hypertension induced by orally administered nitro-L-arginine. Hypertension. 1993 Mar;21(3):359–363. doi: 10.1161/01.hyp.21.3.359. [DOI] [PubMed] [Google Scholar]
  11. De Nicola L., Blantz R. C., Gabbai F. B. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest. 1992 Apr;89(4):1248–1256. doi: 10.1172/JCI115709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durante W., Liao L., Schafer A. I. Differential regulation of L-arginine transport and inducible NOS in cultured vascular smooth muscle cells. Am J Physiol. 1995 Mar;268(3 Pt 2):H1158–H1164. doi: 10.1152/ajpheart.1995.268.3.H1158. [DOI] [PubMed] [Google Scholar]
  13. Finkel M. S., Oddis C. V., Jacob T. D., Watkins S. C., Hattler B. G., Simmons R. L. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science. 1992 Jul 17;257(5068):387–389. doi: 10.1126/science.1631560. [DOI] [PubMed] [Google Scholar]
  14. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1990 Nov;101(3):625–631. doi: 10.1111/j.1476-5381.1990.tb14131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hinglais N., Heudes D., Nicoletti A., Mandet C., Laurent M., Bariéty J., Michel J. B. Colocalization of myocardial fibrosis and inflammatory cells in rats. Lab Invest. 1994 Feb;70(2):286–294. [PubMed] [Google Scholar]
  16. Hu L., Manning R. D., Jr, Brands M. W. Long-term cardiovascular role of nitric oxide in conscious rats. Hypertension. 1994 Feb;23(2):185–194. doi: 10.1161/01.hyp.23.2.185. [DOI] [PubMed] [Google Scholar]
  17. Huang M., Manning R. D., Jr, LeBlanc M. H., Hester R. L. Overall hemodynamic studies after the chronic inhibition of endothelial-derived nitric oxide in rats. Am J Hypertens. 1995 Apr;8(4 Pt 1):358–364. doi: 10.1016/0895-7061(94)00203-n. [DOI] [PubMed] [Google Scholar]
  18. King A. J., Mercer P., Troy J. L., Brenner B. M. Endothelium-derived relaxing factor and the vascular reply to systemic hypertension. J Am Soc Nephrol. 1991 Dec;2(6):1072–1077. doi: 10.1681/ASN.V261072. [DOI] [PubMed] [Google Scholar]
  19. Klabunde R. E., Kimber N. D., Kuk J. E., Helgren M. C., Förstermann U. NG-methyl-L-arginine decreases contractility, cGMP and cAMP in isoproterenol-stimulated rat hearts in vitro. Eur J Pharmacol. 1992 Nov 13;223(1):1–7. doi: 10.1016/0014-2999(92)90810-q. [DOI] [PubMed] [Google Scholar]
  20. Knowlton A. A., Connelly C. M., Romo G. M., Mamuya W., Apstein C. S., Brecher P. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest. 1992 Apr;89(4):1060–1068. doi: 10.1172/JCI115685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kurose I., Wolf R., Grisham M. B., Granger D. N. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994 Mar;74(3):376–382. doi: 10.1161/01.res.74.3.376. [DOI] [PubMed] [Google Scholar]
  23. Lowenstein C. J., Snyder S. H. Nitric oxide, a novel biologic messenger. Cell. 1992 Sep 4;70(5):705–707. doi: 10.1016/0092-8674(92)90301-r. [DOI] [PubMed] [Google Scholar]
  24. Ma X. L., Weyrich A. S., Lefer D. J., Lefer A. M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993 Feb;72(2):403–412. doi: 10.1161/01.res.72.2.403. [DOI] [PubMed] [Google Scholar]
  25. Mamuya W. S., Brecher P. Fibronectin expression in the normal and hypertrophic rat heart. J Clin Invest. 1992 Feb;89(2):392–401. doi: 10.1172/JCI115598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsubara H., Kanasaki M., Murasawa S., Tsukaguchi Y., Nio Y., Inada M. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. J Clin Invest. 1994 Apr;93(4):1592–1601. doi: 10.1172/JCI117139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meggs L. G., Coupet J., Huang H., Cheng W., Li P., Capasso J. M., Homcy C. J., Anversa P. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res. 1993 Jun;72(6):1149–1162. doi: 10.1161/01.res.72.6.1149. [DOI] [PubMed] [Google Scholar]
  28. Pollock D. M., Polakowski J. S., Divish B. J., Opgenorth T. J. Angiotensin blockade reverses hypertension during long-term nitric oxide synthase inhibition. Hypertension. 1993 May;21(5):660–666. doi: 10.1161/01.hyp.21.5.660. [DOI] [PubMed] [Google Scholar]
  29. Qiu C., Engels K., Baylis C. Angiotensin II and alpha 1-adrenergic tone in chronic nitric oxide blockade-induced hypertension. Am J Physiol. 1994 May;266(5 Pt 2):R1470–R1476. doi: 10.1152/ajpregu.1994.266.5.R1470. [DOI] [PubMed] [Google Scholar]
  30. Ribeiro M. O., Antunes E., de Nucci G., Lovisolo S. M., Zatz R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension. 1992 Sep;20(3):298–303. doi: 10.1161/01.hyp.20.3.298. [DOI] [PubMed] [Google Scholar]
  31. Sadoshima J., Izumo S. Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep;73(3):413–423. doi: 10.1161/01.res.73.3.413. [DOI] [PubMed] [Google Scholar]
  32. Samuel J. L., Barrieux A., Dufour S., Dubus I., Contard F., Koteliansky V., Farhadian F., Marotte F., Thiéry J. P., Rappaport L. Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest. 1991 Nov;88(5):1737–1746. doi: 10.1172/JCI115492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schulz R., Nava E., Moncada S. Induction and potential biological relevance of a Ca(2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol. 1992 Mar;105(3):575–580. doi: 10.1111/j.1476-5381.1992.tb09021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sechi L. A., Griffin C. A., Grady E. F., Kalinyak J. E., Schambelan M. Characterization of angiotensin II receptor subtypes in rat heart. Circ Res. 1992 Dec;71(6):1482–1489. doi: 10.1161/01.res.71.6.1482. [DOI] [PubMed] [Google Scholar]
  35. Weber K. T. The what, why and how of hypertensive heart disease. J Hum Hypertens. 1994 Sep;8(9):665–675. [PubMed] [Google Scholar]
  36. Weyrich A. S., Ma X. L., Buerke M., Murohara T., Armstead V. E., Lefer A. M., Nicolas J. M., Thomas A. P., Lefer D. J., Vinten-Johansen J. Physiological concentrations of nitric oxide do not elicit an acute negative inotropic effect in unstimulated cardiac muscle. Circ Res. 1994 Oct;75(4):692–700. doi: 10.1161/01.res.75.4.692. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES