Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 Nov;24(5):815–818. doi: 10.1128/aac.24.5.815

Effect of gentamicin treatment on adenylate cyclase and Na+, K+-ATPase activities in renal tissues of rats.

S F Queener, F C Luft, F G Hamel
PMCID: PMC185949  PMID: 6318658

Abstract

Gentamicin (20 mg/kg) treatment of male rats reduced Na+,K+-ATPase activity by 32% in renal cortical plasma membranes. In contrast, adenylate cyclase stimulation by isoproterenol or a guanyl nucleotide or both was enhanced by as much as twofold in glomeruli and in plasma membranes of gentamicin-treated rats. These effects of gentamicin are suggested to be related to the changes in renal phospholipid metabolism produced by the drug.

Full text

PDF
815

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besch H. R., Jr, Jones L. R., Watanabe A. M. Intact vesicles of canine cardiac sarcolemma: evidence from vectorial properties of Na+, K+-ATPase. Circ Res. 1976 Oct;39(4):586–595. doi: 10.1161/01.res.39.4.586. [DOI] [PubMed] [Google Scholar]
  2. Cronin R. E., Nix K. L., Ferguson E. R., Southern P. M., Henrich W. L. Renal cortex ion composition and Na-K-ATPase activity in gentamicin nephrotoxicity. Am J Physiol. 1982 May;242(5):F477–F483. doi: 10.1152/ajprenal.1982.242.5.F477. [DOI] [PubMed] [Google Scholar]
  3. Cuppage F. E., Setter K., Sullivan P., Reitzes E. J., Melnykovych A. O. Gentamicin nephrotoxicity. II. Physiological, biochemical and morphological effects of prolonged administration to rats. Virchows Arch B Cell Pathol. 1977 Jun 24;24(2):121–138. [PubMed] [Google Scholar]
  4. Hostetler K. Y., Hall L. B. Inhibition of kidney lysosomal phospholipases A and C by aminoglycoside antibiotics: possible mechanism of aminoglycoside toxicity. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1663–1667. doi: 10.1073/pnas.79.5.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuhar M. J., Mak L. L., Lietman P. S. Autoradiographic localization of [3H]gentamicin in the proximal renal tubules of mice. Antimicrob Agents Chemother. 1979 Jan;15(1):131–133. doi: 10.1128/aac.15.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Marx S. J., Fedak S. A., Aurbach G. D. Preparation and characterization of a hormone-responsive renal plasma membrane fraction. J Biol Chem. 1972 Nov 10;247(21):6913–6918. [PubMed] [Google Scholar]
  7. Orly J., Schramm M. Fatty acids as modulators of membrane functions: catecholamine-activated adenylate cyclase of the turkey erythrocyte. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3433–3437. doi: 10.1073/pnas.72.9.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Queener S. F., Fleming J. W., Bell N. H. Analysis of sodium fluoride enhancement of calcitonin stimulation of renal cortical adenylate cyclase. J Biol Chem. 1978 Dec 25;253(24):9033–9040. [PubMed] [Google Scholar]
  9. Ross E. M. Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase. J Biol Chem. 1982 Sep 25;257(18):10751–10758. [PubMed] [Google Scholar]
  10. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES