Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Dec;96(6):2654–2660. doi: 10.1172/JCI118331

Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism.

W Chao 1, R G Spragg 1, R M Smith 1
PMCID: PMC185971  PMID: 8675631

Abstract

Surfactant has been shown to inhibit the production of reactive oxygen intermediates by various cells including alveolar macrophages and peripheral blood neutrophils. Superoxide O2-. production by the respiratory burst oxidase in isolated plasma membranes prepared from PMA-treated human neutrophils was significantly attenuated by prior treatment with native porcine surfactant. The effect was concentration dependent with half-maximal inhibition seen at approximately 0.050 mg surfactant phospholipid/ml. Kinetic analyses of the membrane-bound enzyme prepared from neutrophils stimulated by PMA in the presence or absence of surfactant demonstrated that surfactant treatment led to a decrease in the maximal velocity of O2-. production when NADPH was used as substrate, but there was no effect on enzyme substrate affinity. Immunoblotting studies demonstrated that surfactant treatment induced a decrease in the association of two oxidase components, p47phox and p67phox, with the isolated plasma membrane. In contrast, surfactant treatment of the cells did not alter the phosphorylation of p47phox. A mixture of phospholipids (phosphatidylcholine and phosphatidylglycerol in a 7:3 ratio) showed similar inhibition of the PMA-induced O2-. generation. Taken together, these data suggest the mechanism of surfactant-induced inhibition of O2-. production by human neutrophils involves attenuation of translocation of cytosolic components of the respiratory burst oxidase to the plasma membrane. The phospholipid components of surfactant appear to play a significant role in this mechanism.

Full text

PDF
2654

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blau H., Riklis S., Kravtsov V., Kalina M. Secretion of cytokines by rat alveolar epithelial cells: possible regulatory role for SP-A. Am J Physiol. 1994 Feb;266(2 Pt 1):L148–L155. doi: 10.1152/ajplung.1994.266.2.L148. [DOI] [PubMed] [Google Scholar]
  2. Burnham D. N., Uhlinger D. J., Lambeth J. D. Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils. J Biol Chem. 1990 Oct 15;265(29):17550–17559. [PubMed] [Google Scholar]
  3. Cassatella M. A., Della Bianca V., Berton G., Rossi F. Activation by gamma interferon of human macrophage capability to produce toxic oxygen molecules is accompanied by decreased Km of the superoxide-generating NADPH oxidase. Biochem Biophys Res Commun. 1985 Nov 15;132(3):908–914. doi: 10.1016/0006-291x(85)91893-5. [DOI] [PubMed] [Google Scholar]
  4. Chanock S. J., el Benna J., Smith R. M., Babior B. M. The respiratory burst oxidase. J Biol Chem. 1994 Oct 7;269(40):24519–24522. [PubMed] [Google Scholar]
  5. Clark R. A., Volpp B. D., Leidal K. G., Nauseef W. M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. doi: 10.1172/JCI114496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Combadière C., el Benna J., Pedruzzi E., Hakim J., Périanin A. Stimulation of the human neutrophil respiratory burst by formyl peptides is primed by a protein kinase inhibitor, staurosporine. Blood. 1993 Nov 1;82(9):2890–2898. [PubMed] [Google Scholar]
  7. Fan B. R., Nguyen T., Waring A., Taeusch W. Staining properties of bovine low molecular weight hydrophobic surfactant proteins after polyacrylamide gel electrophoresis. Anal Biochem. 1990 Apr;186(1):41–45. doi: 10.1016/0003-2697(90)90569-u. [DOI] [PubMed] [Google Scholar]
  8. Gilliard N., Heldt G. P., Loredo J., Gasser H., Redl H., Merritt T. A., Spragg R. G. Exposure of the hydrophobic components of porcine lung surfactant to oxidant stress alters surface tension properties. J Clin Invest. 1994 Jun;93(6):2608–2615. doi: 10.1172/JCI117273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gregory T. J., Longmore W. J., Moxley M. A., Whitsett J. A., Reed C. R., Fowler A. A., 3rd, Hudson L. D., Maunder R. J., Crim C., Hyers T. M. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest. 1991 Dec;88(6):1976–1981. doi: 10.1172/JCI115523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haagsman H. P., Hawgood S., Sargeant T., Buckley D., White R. T., Drickamer K., Benson B. J. The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem. 1987 Oct 15;262(29):13877–13880. [PubMed] [Google Scholar]
  11. Hallman M., Spragg R., Harrell J. H., Moser K. M., Gluck L. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J Clin Invest. 1982 Sep;70(3):673–683. doi: 10.1172/JCI110662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayakawa H., Giridhar G., Myrvik Q. N., Kucera L. Pulmonary surfactant phospholipids modulate priming of rabbit alveolar macrophages for oxidative responses. J Leukoc Biol. 1992 Apr;51(4):379–385. doi: 10.1002/jlb.51.4.379. [DOI] [PubMed] [Google Scholar]
  13. Hayakawa H., Myrvik Q. N., St Clair R. W. Pulmonary surfactant inhibits priming of rabbit alveolar macrophage. Evidence that surfactant suppresses the oxidative burst of alveolar macrophage in infant rabbits. Am Rev Respir Dis. 1989 Nov;140(5):1390–1397. doi: 10.1164/ajrccm/140.5.1390. [DOI] [PubMed] [Google Scholar]
  14. Heyworth P. G., Curnutte J. T., Nauseef W. M., Volpp B. D., Pearson D. W., Rosen H., Clark R. A. Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest. 1991 Jan;87(1):352–356. doi: 10.1172/JCI114993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katsura H., Kawada H., Konno K. Rat surfactant apoprotein A (SP-A) exhibits antioxidant effects on alveolar macrophages. Am J Respir Cell Mol Biol. 1993 Nov;9(5):520–525. doi: 10.1165/ajrcmb/9.5.520. [DOI] [PubMed] [Google Scholar]
  16. Katyal S. L., Estes L. W., Lombardi B. Method for the isolation of surfactant from homogenates and lavages of lung of adult, newborn, and fetal rats. Lab Invest. 1977 Jun;36(6):585–592. [PubMed] [Google Scholar]
  17. Kleinberg M. E., Malech H. L., Rotrosen D. The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem. 1990 Sep 15;265(26):15577–15583. [PubMed] [Google Scholar]
  18. Kleinberg M. E., Mital D., Rotrosen D., Malech H. L. Characterization of a phagocyte cytochrome b558 91-kilodalton subunit functional domain: identification of peptide sequence and amino acids essential for activity. Biochemistry. 1992 Mar 17;31(10):2686–2690. doi: 10.1021/bi00125a008. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lew P. D., Southwick F. S., Stossel T. P., Whitin J. C., Simons E., Cohen H. J. A variant of chronic granulomatous disease: deficient oxidative metabolism due to a low-affinity NADPH oxidase. N Engl J Med. 1981 Nov 26;305(22):1329–1333. doi: 10.1056/NEJM198111263052207. [DOI] [PubMed] [Google Scholar]
  21. Lewis J. F., Jobe A. H. Surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis. 1993 Jan;147(1):218–233. doi: 10.1164/ajrccm/147.1.218. [DOI] [PubMed] [Google Scholar]
  22. Lomax K. J., Leto T. L., Nunoi H., Gallin J. I., Malech H. L. Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science. 1989 Jul 28;245(4916):409–412. doi: 10.1126/science.2547247. [DOI] [PubMed] [Google Scholar]
  23. Manz-Keinke H., Plattner H., Schlepper-Schäfer J. Lung surfactant protein A (SP-A) enhances serum-independent phagocytosis of bacteria by alveolar macrophages. Eur J Cell Biol. 1992 Feb;57(1):95–100. [PubMed] [Google Scholar]
  24. Markert M., Andrews P. C., Babior B. M. Measurement of O2- production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Methods Enzymol. 1984;105:358–365. doi: 10.1016/s0076-6879(84)05048-5. [DOI] [PubMed] [Google Scholar]
  25. Maurides P. A., Akkaraju G. R., Jagus R. Evaluation of protein phosphorylation state by a combination of vertical slab gel isoelectric focusing and immunoblotting. Anal Biochem. 1989 Nov 15;183(1):144–151. doi: 10.1016/0003-2697(89)90182-6. [DOI] [PubMed] [Google Scholar]
  26. Mayo L. A., Curnutte J. T. Kinetic microplate assay for superoxide production by neutrophils and other phagocytic cells. Methods Enzymol. 1990;186:567–575. doi: 10.1016/0076-6879(90)86151-k. [DOI] [PubMed] [Google Scholar]
  27. McPhail L. C., Clayton C. C., Snyderman R. The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem. 1984 May 10;259(9):5768–5775. [PubMed] [Google Scholar]
  28. Mukherjee G., Quinn M. T., Linner J. G., Jesaitis A. J. Remodeling of the plasma membrane after stimulation of neutrophils with f-Met-Leu-Phe and dihydrocytochalasin B: identification of membrane subdomains containing NADPH oxidase activity. J Leukoc Biol. 1994 Jun;55(6):685–694. doi: 10.1002/jlb.55.6.685. [DOI] [PubMed] [Google Scholar]
  29. Nauseef W. M., Volpp B. D., McCormick S., Leidal K. G., Clark R. A. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem. 1991 Mar 25;266(9):5911–5917. [PubMed] [Google Scholar]
  30. Okamura N., Curnutte J. T., Roberts R. L., Babior B. M. Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils. Defects in the phosphorylation of a group of closely related 48-kDa proteins in two forms of chronic granulomatous disease. J Biol Chem. 1988 May 15;263(14):6777–6782. [PubMed] [Google Scholar]
  31. Petty T. L., Reiss O. K., Paul G. W., Silvers G. W., Elkins N. D. Characteristics of pulmonary surfactant in adult respiratory distress syndrome associated with trauma and shock. Am Rev Respir Dis. 1977 Mar;115(3):531–536. doi: 10.1164/arrd.1977.115.3.531. [DOI] [PubMed] [Google Scholar]
  32. Quinn M. T., Evans T., Loetterle L. R., Jesaitis A. J., Bokoch G. M. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem. 1993 Oct 5;268(28):20983–20987. [PubMed] [Google Scholar]
  33. Ryan S. F., Ghassibi Y., Liau D. F. Effects of activated polymorphonuclear leukocytes upon pulmonary surfactant in vitro. Am J Respir Cell Mol Biol. 1991 Jan;4(1):33–41. doi: 10.1165/ajrcmb/4.1.33. [DOI] [PubMed] [Google Scholar]
  34. Segal A. W., West I., Wientjes F., Nugent J. H., Chavan A. J., Haley B., Garcia R. C., Rosen H., Scrace G. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J. 1992 Jun 15;284(Pt 3):781–788. doi: 10.1042/bj2840781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sherman M. P., D'Ambola J. B., Aeberhard E. E., Barrett C. T. Surfactant therapy of newborn rabbits impairs lung macrophage bactericidal activity. J Appl Physiol (1985) 1988 Jul;65(1):137–145. doi: 10.1152/jappl.1988.65.1.137. [DOI] [PubMed] [Google Scholar]
  36. Smith R. M., Curnutte J. T., Mayo L. A., Babior B. M. Use of an affinity label to probe the function of the NADPH binding component of the respiratory burst oxidase of human neutrophils. J Biol Chem. 1989 Jul 25;264(21):12243–12248. [PubMed] [Google Scholar]
  37. Smith R. M., Curnutte J. T. Molecular basis of chronic granulomatous disease. Blood. 1991 Feb 15;77(4):673–686. [PubMed] [Google Scholar]
  38. Spragg R. G., Gilliard N., Richman P., Smith R. M., Hite R. D., Pappert D., Robertson B., Curstedt T., Strayer D. Acute effects of a single dose of porcine surfactant on patients with the adult respiratory distress syndrome. Chest. 1994 Jan;105(1):195–202. doi: 10.1378/chest.105.1.195. [DOI] [PubMed] [Google Scholar]
  39. Tate R. M., Repine J. E. Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis. 1983 Sep;128(3):552–559. doi: 10.1164/arrd.1983.128.3.552. [DOI] [PubMed] [Google Scholar]
  40. Umei T., Babior B. M., Curnutte J. T., Smith R. M. Identification of the NADPH-binding subunit of the respiratory burst oxidase. J Biol Chem. 1991 Apr 5;266(10):6019–6022. [PubMed] [Google Scholar]
  41. Weber H., Heilmann P., Meyer B., Maier K. L. Effect of canine surfactant protein (SP-A) on the respiratory burst of phagocytic cells. FEBS Lett. 1990 Sep 17;270(1-2):90–94. doi: 10.1016/0014-5793(90)81241-f. [DOI] [PubMed] [Google Scholar]
  42. Weg J. G., Balk R. A., Tharratt R. S., Jenkinson S. G., Shah J. B., Zaccardelli D., Horton J., Pattishall E. N. Safety and potential efficacy of an aerosolized surfactant in human sepsis-induced adult respiratory distress syndrome. JAMA. 1994 Nov 9;272(18):1433–1438. [PubMed] [Google Scholar]
  43. Weiland J. E., Davis W. B., Holter J. F., Mohammed J. R., Dorinsky P. M., Gadek J. E. Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis. 1986 Feb;133(2):218–225. doi: 10.1164/arrd.1986.133.2.218. [DOI] [PubMed] [Google Scholar]
  44. el Benna J., Ruedi J. M., Babior B. M. Cytosolic guanine nucleotide-binding protein Rac2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxidase components p47phox and p67phox to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem. 1994 Mar 4;269(9):6729–6734. [PubMed] [Google Scholar]
  45. van Iwaarden F., Welmers B., Verhoef J., Haagsman H. P., van Golde L. M. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol. 1990 Jan;2(1):91–98. doi: 10.1165/ajrcmb/2.1.91. [DOI] [PubMed] [Google Scholar]
  46. van Iwaarden J. F., van Strijp J. A., Visser H., Haagsman H. P., Verhoef J., van Golde L. M. Binding of surfactant protein A (SP-A) to herpes simplex virus type 1-infected cells is mediated by the carbohydrate moiety of SP-A. J Biol Chem. 1992 Dec 15;267(35):25039–25043. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES