Abstract
A novel mechanism of molecular disease was uncovered in a patient with prolonged thrombin time and a mild bleeding tendency. DNA sequencing of the fibrinogen A alpha chain indicated heterozygosity for a mutation of 20 Val --> Asp. The molar ratio of fibrinopeptide A to B released by thrombin was substantially reduced at 0.64 suggesting either impaired cleavage or that the majority of the variant alpha chains lacked the A peptide. The latter novel proposal arises from the observation that the mutation changes the normal 16R G P R V20 sequence to R G P R D creating a potential furin cleavage site at Arg 19. Synthetic peptides incorporating both sequences were tested as substrates for both thrombin and furin. There was no substantial difference in the thrombin catalyzed cleavage. However, the variant peptide, but not the normal, was rapidly cleaved at Arg 19 by furin. Predictably intracellular cleavage of the Aalpha-chain at Arg 19 would remove fibrinopeptide A together with the G P R polymerisation site. This was confirmed by sequence analysis of fibrinogen Aalpha chains after isolation by SDS-PAGE. The expected normal sequence was detected together with a new sequence (D V E R H Q S A-) commencing at residue 20. Truncation was further verified by nonreducing SDS-PAGE of the NH2-terminal disulfide knot which indicated the presence of aberrant homo- and heterodimers.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bentley A. K., Rees D. J., Rizza C., Brownlee G. G. Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position -4. Cell. 1986 May 9;45(3):343–348. doi: 10.1016/0092-8674(86)90319-3. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Fellowes A. P. Albumin Hawkes Bay; a low level variant caused by loss of a sulphydryl group at position 177. Biochim Biophys Acta. 1993 Aug 4;1182(1):46–50. doi: 10.1016/0925-4439(93)90151-p. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Nakayama K. Cleavage of proalbumin peptides by furin reveals unexpected restrictions at the P2 and P'1 sites. FEBS Lett. 1994 Jun 20;347(1):80–84. doi: 10.1016/0014-5793(94)00511-7. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Nakayama K. Furin has the proalbumin substrate specificity and serpin inhibitory properties of an in situ hepatic convertase. FEBS Lett. 1994 Jan 31;338(2):147–151. doi: 10.1016/0014-5793(94)80353-6. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Peach R. J., Boswell D. R. Novel human proalbumin variant with intact dibasic sequence facilitates identification of its converting enzyme. Biochim Biophys Acta. 1989 Oct 13;993(1):48–50. doi: 10.1016/0304-4165(89)90141-4. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Peach R. J. Calcium-dependent KEX2-like protease found in hepatic secretory vesicles converts proalbumin to albumin. FEBS Lett. 1988 Feb 29;229(1):167–170. doi: 10.1016/0014-5793(88)80819-6. [DOI] [PubMed] [Google Scholar]
- Brennan S. O., Peach R. J. The processing of human proinsulin and chicken proalbumin by rat hepatic vesicles suggests a convertase specific for X-Y-Arg-Arg or Arg-X-Y-Arg sequences. J Biol Chem. 1991 Nov 15;266(32):21504–21508. [PubMed] [Google Scholar]
- Chiron M. F., Fryling C. M., FitzGerald D. J. Cleavage of pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem. 1994 Jul 8;269(27):18167–18176. [PubMed] [Google Scholar]
- Chung D. W., Harris J. E., Davie E. W. Nucleotide sequences of the three genes coding for human fibrinogen. Adv Exp Med Biol. 1990;281:39–48. doi: 10.1007/978-1-4615-3806-6_3. [DOI] [PubMed] [Google Scholar]
- Davidson H. W., Hutton J. C. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J. 1987 Jul 15;245(2):575–582. doi: 10.1042/bj2450575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diuguid D. L., Rabiet M. J., Furie B. C., Liebman H. A., Furie B. Molecular basis of hemophilia B: a defective enzyme due to an unprocessed propeptide is caused by a point mutation in the factor IX precursor. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5803–5807. doi: 10.1073/pnas.83.16.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrell D. H., Huang S., Davie E. W. Processing of the carboxyl 15-amino acid extension in the alpha-chain of fibrinogen. J Biol Chem. 1993 May 15;268(14):10351–10355. [PubMed] [Google Scholar]
- Halban P. A., Irminger J. C. Sorting and processing of secretory proteins. Biochem J. 1994 Apr 1;299(Pt 1):1–18. doi: 10.1042/bj2990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwig R., Danishefsky K. J. Studies on the assembly and secretion of fibrinogen. J Biol Chem. 1991 Apr 5;266(10):6578–6585. [PubMed] [Google Scholar]
- Hessel B., Stenbjerg S., Dyr J., Kudryk B., Therkildsen L., Blombäck B. Fibrinogen Aarhus--a new case of dysfibrinogenemia. Thromb Res. 1986 Apr 1;42(1):21–37. doi: 10.1016/0049-3848(86)90193-3. [DOI] [PubMed] [Google Scholar]
- Higgins D. L., Shafer J. A. Fibrinogen Petoskey, a dysfibrinogenemia characterized by replacement of Arg-A alpha 16 by a histidyl residue. Evidence for thrombin-catalyzed hydrolysis at a histidyl residue. J Biol Chem. 1981 Dec 10;256(23):12013–12017. [PubMed] [Google Scholar]
- Holm B., Nilsen D. W., Kierulf P., Godal H. C. Purification and characterization of 3 fibrinogens with different molecular weights obtained from normal human plasma. Thromb Res. 1985 Jan 1;37(1):165–176. doi: 10.1016/0049-3848(85)90043-x. [DOI] [PubMed] [Google Scholar]
- Lee M. H., Kaczmarek E., Chin D. T., Oda A., McIntosh S., Bauer K. A., Clyne L. P., McDonagh J. Fibrinogen Ledyard (A alpha Arg16----Cys): biochemical and physiologic characterization. Blood. 1991 Oct 1;78(7):1744–1752. [PubMed] [Google Scholar]
- Murray V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 1989 Nov 11;17(21):8889–8889. doi: 10.1093/nar/17.21.8889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oda K., Misumi Y., Sohda M., Takami N., Sakaki Y., Ikehara Y. Selective processing of proalbumin determined by site-specific mutagenesis. Biochem Biophys Res Commun. 1991 Mar 15;175(2):690–696. doi: 10.1016/0006-291x(91)91621-i. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Siebenlist K. R., Prchal J. T., Mosesson M. W. Fibrinogen Birmingham: a heterozygous dysfibrinogenemia (A alpha 16 Arg----His) containing heterodimeric molecules. Blood. 1988 Mar;71(3):613–618. [PubMed] [Google Scholar]
- Yamazumi K., Doolittle R. F. Photoaffinity labeling of the primary fibrin polymerization site: localization of the label to gamma-chain Tyr-363. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2893–2896. doi: 10.1073/pnas.89.7.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimasa Y., Seino S., Whittaker J., Kakehi T., Kosaki A., Kuzuya H., Imura H., Bell G. I., Steiner D. F. Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science. 1988 May 6;240(4853):784–787. doi: 10.1126/science.3283938. [DOI] [PubMed] [Google Scholar]