Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Dec;96(6):2947–2954. doi: 10.1172/JCI118366

Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation.

F Niimura 1, P A Labosky 1, J Kakuchi 1, S Okubo 1, H Yoshida 1, T Oikawa 1, T Ichiki 1, A J Naftilan 1, A Fogo 1, T Inagami 1, et al.
PMCID: PMC186006  PMID: 8675666

Abstract

Elevated levels of endogenous angiotensin can cause hypertensive nephrosclerosis as a result of the potent vasopressor action of the peptide. We have produced by gene targeting mice homozygous for a null mutation in the angiotensinogen gene (Atg-1-). Postnatally, Atg-1- animals show a modest delay in glomerular maturation. Although Atg-1- animals are hypotensive by 7 wk of age, they develop, by 3 wk of age, pronounced lesions in the renal cortex, similar to those of hypertensive nephrosclerosis. In addition, the papillae of homozygous mutant kidneys are reduced in size. These lesions are accompanied by local up-regulation of PDGF-B and TGF-beta1 mRNA in the cortex and down-regulation of PDGF-A mRNA in the papilla. The study demonstrates an important requirement for angiotensin in achieving and maintaining the normal morphology of the kidney. The mechanism through which angiotensin maintains the volume homeostasis in mammals includes promotion of the maturational growth of the papilla.

Full text

PDF
2947

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Meyer T. W., Rennke H. G., Brenner B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985 Aug;76(2):612–619. doi: 10.1172/JCI112013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson S., Rennke H. G., Brenner B. M. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest. 1986 Jun;77(6):1993–2000. doi: 10.1172/JCI112528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker K. M., Chernin M. I., Wixson S. K., Aceto J. F. Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol. 1990 Aug;259(2 Pt 2):H324–H332. doi: 10.1152/ajpheart.1990.259.2.H324. [DOI] [PubMed] [Google Scholar]
  4. Cattran D. C., Greenwood C., Ritchie S. Long-term benefits of angiotensin-converting enzyme inhibitor therapy in patients with severe immunoglobulin a nephropathy: a comparison to patients receiving treatment with other antihypertensive agents and to patients receiving no therapy. Am J Kidney Dis. 1994 Feb;23(2):247–254. doi: 10.1016/s0272-6386(12)80980-2. [DOI] [PubMed] [Google Scholar]
  5. Clouston W. M., Evans B. A., Haralambidis J., Richards R. I. Molecular cloning of the mouse angiotensinogen gene. Genomics. 1988 Apr;2(3):240–248. doi: 10.1016/0888-7543(88)90008-0. [DOI] [PubMed] [Google Scholar]
  6. Clozel J. P., Hefti F. Cilazapril prevents the development of cardiac hypertrophy and the decrease of coronary vascular reserve in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1988 May;11(5):568–572. doi: 10.1097/00005344-198805000-00009. [DOI] [PubMed] [Google Scholar]
  7. Cooper M. E., Rumble J., Komers R., Du H. C., Jandeleit K., Chou S. T. Diabetes-associated mesenteric vascular hypertrophy is attenuated by angiotensin-converting enzyme inhibition. Diabetes. 1994 Oct;43(10):1221–1228. doi: 10.2337/diab.43.10.1221. [DOI] [PubMed] [Google Scholar]
  8. DiCorleto P. E., Bowen-Pope D. F. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1919–1923. doi: 10.1073/pnas.80.7.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fogo A., Yoshida Y., Yared A., Ichikawa I. Importance of angiogenic action of angiotensin II in the glomerular growth of maturing kidneys. Kidney Int. 1990 Dec;38(6):1068–1074. doi: 10.1038/ki.1990.314. [DOI] [PubMed] [Google Scholar]
  10. Friberg P., Sundelin B., Bohman S. O., Bobik A., Nilsson H., Wickman A., Gustafsson H., Petersen J., Adams M. A. Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int. 1994 Feb;45(2):485–492. doi: 10.1038/ki.1994.63. [DOI] [PubMed] [Google Scholar]
  11. Gibbons G. H., Pratt R. E., Dzau V. J. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest. 1992 Aug;90(2):456–461. doi: 10.1172/JCI115881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gomez R. A., Chevalier R. L., Everett A. D., Elwood J. P., Peach M. J., Lynch K. R., Carey R. M. Recruitment of renin gene-expressing cells in adult rat kidneys. Am J Physiol. 1990 Oct;259(4 Pt 2):F660–F665. doi: 10.1152/ajprenal.1990.259.4.F660. [DOI] [PubMed] [Google Scholar]
  13. Gomez R. A., Pupilli C., Everett A. D. Molecular and cellular aspects of renin during kidney ontogeny. Pediatr Nephrol. 1991 Jan;5(1):80–87. doi: 10.1007/BF00852854. [DOI] [PubMed] [Google Scholar]
  14. Hooper M., Hardy K., Handyside A., Hunter S., Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987 Mar 19;326(6110):292–295. doi: 10.1038/326292a0. [DOI] [PubMed] [Google Scholar]
  15. Johns D. W., Peach M. J., Gomez R. A., Inagami T., Carey R. M. Angiotensin II regulates renin gene expression. Am J Physiol. 1990 Dec;259(6 Pt 2):F882–F887. doi: 10.1152/ajprenal.1990.259.6.F882. [DOI] [PubMed] [Google Scholar]
  16. Kagami S., Border W. A., Miller D. E., Noble N. A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994 Jun;93(6):2431–2437. doi: 10.1172/JCI117251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kakinuma Y., Kawamura T., Bills T., Yoshioka T., Ichikawa I., Fogo A. Blood pressure-independent effect of angiotensin inhibition on vascular lesions of chronic renal failure. Kidney Int. 1992 Jul;42(1):46–55. doi: 10.1038/ki.1992.259. [DOI] [PubMed] [Google Scholar]
  18. Kakuchi J., Ichiki T., Kiyama S., Hogan B. L., Fogo A., Inagami T., Ichikawa I. Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int. 1995 Jan;47(1):140–147. doi: 10.1038/ki.1995.16. [DOI] [PubMed] [Google Scholar]
  19. Kaneto H., Morrissey J., McCracken R., Reyes A., Klahr S. Enalapril reduces collagen type IV synthesis and expansion of the interstitium in the obstructed rat kidney. Kidney Int. 1994 Jun;45(6):1637–1647. doi: 10.1038/ki.1994.215. [DOI] [PubMed] [Google Scholar]
  20. Kim H. S., Krege J. H., Kluckman K. D., Hagaman J. R., Hodgin J. B., Best C. F., Jennette J. C., Coffman T. M., Maeda N., Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2735–2739. doi: 10.1073/pnas.92.7.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kiyama S., Yoshioka T., Burr I. M., Kon V., Fogo A., Ichikawa I. Strategic locus for the activation of the superoxide dismutase gene in the nephron. Kidney Int. 1995 Feb;47(2):536–546. doi: 10.1038/ki.1995.67. [DOI] [PubMed] [Google Scholar]
  22. Lafayette R. A., Mayer G., Park S. K., Meyer T. W. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1992 Sep;90(3):766–771. doi: 10.1172/JCI115949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Langille B. L., O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986 Jan 24;231(4736):405–407. doi: 10.1126/science.3941904. [DOI] [PubMed] [Google Scholar]
  24. Lewis E. J., Hunsicker L. G., Bain R. P., Rohde R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993 Nov 11;329(20):1456–1462. doi: 10.1056/NEJM199311113292004. [DOI] [PubMed] [Google Scholar]
  25. Mercola M., Wang C. Y., Kelly J., Brownlee C., Jackson-Grusby L., Stiles C., Bowen-Pope D. Selective expression of PDGF A and its receptor during early mouse embryogenesis. Dev Biol. 1990 Mar;138(1):114–122. doi: 10.1016/0012-1606(90)90181-h. [DOI] [PubMed] [Google Scholar]
  26. Misono K. S., Holladay L. A., Murakami K., Kuromizu K., Inagami T. Rapid and large-scale purification and characterization of renin from mouse submaxillary gland. Arch Biochem Biophys. 1982 Sep;217(2):574–581. doi: 10.1016/0003-9861(82)90539-2. [DOI] [PubMed] [Google Scholar]
  27. Mounier F., Hinglais N., Sich M., Gros F., Lacoste M., Deris Y., Alhenc-Gelas F., Gubler M. C. Ontogenesis of angiotensin-I converting enzyme in human kidney. Kidney Int. 1987 Nov;32(5):684–690. doi: 10.1038/ki.1987.261. [DOI] [PubMed] [Google Scholar]
  28. Naftilan A. J., Pratt R. E., Dzau V. J. Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest. 1989 Apr;83(4):1419–1424. doi: 10.1172/JCI114032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pelton R. W., Dickinson M. E., Moses H. L., Hogan B. L. In situ hybridization analysis of TGF beta 3 RNA expression during mouse development: comparative studies with TGF beta 1 and beta 2. Development. 1990 Oct;110(2):609–620. doi: 10.1242/dev.110.2.609. [DOI] [PubMed] [Google Scholar]
  30. Peten E. P., Striker L. J., Fogo A., Ichikawa I., Patel A., Striker G. E. The molecular basis of increased glomerulosclerosis after blockade of the renin angiotensin system in growth hormone transgenic mice. Mol Med. 1994 Nov;1(1):104–115. [PMC free article] [PubMed] [Google Scholar]
  31. Ramírez-Solis R., Davis A. C., Bradley A. Gene targeting in embryonic stem cells. Methods Enzymol. 1993;225:855–878. doi: 10.1016/0076-6879(93)25054-6. [DOI] [PubMed] [Google Scholar]
  32. Richoux J. P., Amsaguine S., Grignon G., Bouhnik J., Menard J., Corvol P. Earliest renin containing cell differentiation during ontogenesis in the rat. An immunocytochemical study. Histochemistry. 1987;88(1):41–46. doi: 10.1007/BF00490165. [DOI] [PubMed] [Google Scholar]
  33. Tanaka R., Sugihara K., Tatematsu A., Fogo A. Internephron heterogeneity of growth factors and sclerosis--modulation of platelet-derived growth factor by angiotensin II. Kidney Int. 1995 Jan;47(1):131–139. doi: 10.1038/ki.1995.15. [DOI] [PubMed] [Google Scholar]
  34. Tanimoto K., Sugiyama F., Goto Y., Ishida J., Takimoto E., Yagami K., Fukamizu A., Murakami K. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994 Dec 16;269(50):31334–31337. [PubMed] [Google Scholar]
  35. Tufro-McReddie A., Johns D. W., Geary K. M., Dagli H., Everett A. D., Chevalier R. L., Carey R. M., Gomez R. A. Angiotensin II type 1 receptor: role in renal growth and gene expression during normal development. Am J Physiol. 1994 Jun;266(6 Pt 2):F911–F918. doi: 10.1152/ajprenal.1994.266.6.F911. [DOI] [PubMed] [Google Scholar]
  36. Wallace K. B., Bailie M. D., Hook J. B. Development of angiotensin-converting enzyme in fetal rat lungs. Am J Physiol. 1979 Jan;236(1):R57–R60. doi: 10.1152/ajpregu.1979.236.1.R57. [DOI] [PubMed] [Google Scholar]
  37. Zatz R., Dunn B. R., Meyer T. W., Anderson S., Rennke H. G., Brenner B. M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986 Jun;77(6):1925–1930. doi: 10.1172/JCI112521. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES