Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Dec;96(6):2990–2996. doi: 10.1172/JCI118371

Immune tolerance to autoantibody-derived peptides delays development of autoimmunity in murine lupus.

R R Singh 1, F M Ebling 1, E E Sercarz 1, B H Hahn 1
PMCID: PMC186011  PMID: 8675671

Abstract

Mechanisms that initiate and maintain autoantibody (autoAb) production in individuals with autoimmune diseases like SLE are poorly understood. Inadequate suppression of autoreactive T cells and/or unusual activation of T and B cells may underlie the persistence of pathogenic autoAbs in lupus. Here, we examine the possibility that in mice with lupus, autoAb molecules may be upregulating their own production by activating self-reactive T cells via their own processed peptides; downregulation of this circuit may decrease autoAb production and delay the development of lupus. We found that before the onset of clinical disease, lupus-prone (NZB/NZW) F1 [BWF1] (but not MHC-matched nonautoimmune mice) developed spontaneous T cell autoimmunity to peptides from variable regions of heavy chains (VH) of syngeneic anti-DNA mAbs but not to peptides from the VH region of an mAb to an exogenous antigen. Tolerizing young BWF1 mice with intravenous injections of autoAb-derived determinants substantially delayed development of anti-DNA antibodies and nephritis and prolonged survival. Thus, in such an autoAb-mediated disease, the presence of autoreactive T cells against VH region determinants of autoAbs may represent an important mechanism involved in the regulation of autoimmunity. Our findings show that tolerizing such autoreactive T cells can postpone the development of an autoimmune disease like SLE.

Full text

PDF
2990

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman A., Theofilopoulos A. N., Weiner R., Katz D. H., Dixon F. J. Analysis of T cell function in autoimmune murine strains. Defects in production and responsiveness to interleukin 2. J Exp Med. 1981 Sep 1;154(3):791–808. doi: 10.1084/jem.154.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando D. G., Sercarz E. E., Hahn B. H. Mechanisms of T and B cell collaboration in the in vitro production of anti-DNA antibodies in the NZB/NZW F1 murine SLE model. J Immunol. 1987 May 15;138(10):3185–3190. [PubMed] [Google Scholar]
  3. Bhardwaj V., Kumar V., Geysen H. M., Sercarz E. E. Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. Implications for thymic education and autoimmunity. J Immunol. 1993 Nov 1;151(9):5000–5010. [PubMed] [Google Scholar]
  4. Bogen B., Weiss S. Processing and presentation of idiotypes to MHC-restricted T cells. Int Rev Immunol. 1993;10(4):337–355. doi: 10.3109/08830189309061709. [DOI] [PubMed] [Google Scholar]
  5. Chen J. J., Kaveri S. V., Kohler H. Cryptic T cell epitopes in polymorphic immunoglobulin regions: evidence for positive repertoire selection during fetal development. Eur J Immunol. 1992 Dec;22(12):3077–3083. doi: 10.1002/eji.1830221208. [DOI] [PubMed] [Google Scholar]
  6. Chicz R. M., Urban R. G., Gorga J. C., Vignali D. A., Lane W. S., Strominger J. L. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med. 1993 Jul 1;178(1):27–47. doi: 10.1084/jem.178.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Critchfield J. M., Racke M. K., Zúiga-Pflücker J. C., Cannella B., Raine C. S., Goverman J., Lenardo M. J. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science. 1994 Feb 25;263(5150):1139–1143. doi: 10.1126/science.7509084. [DOI] [PubMed] [Google Scholar]
  8. Datta S. K., Patel H., Berry D. Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis. J Exp Med. 1987 May 1;165(5):1252–1268. doi: 10.1084/jem.165.5.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diamond B., Katz J. B., Paul E., Aranow C., Lustgarten D., Scharff M. D. The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol. 1992;10:731–757. doi: 10.1146/annurev.iy.10.040192.003503. [DOI] [PubMed] [Google Scholar]
  10. Ebling F. M., Tsao B. P., Singh R. R., Sercarz E., Hahn B. H. A peptide derived from an autoantibody can stimulate T cells in the (NZB x NZW)F1 mouse model of systemic lupus erythematosus. Arthritis Rheum. 1993 Mar;36(3):355–364. doi: 10.1002/art.1780360311. [DOI] [PubMed] [Google Scholar]
  11. Ebling F., Hahn B. H. Restricted subpopulations of DNA antibodies in kidneys of mice with systemic lupus. Comparison of antibodies in serum and renal eluates. Arthritis Rheum. 1980 Apr;23(4):392–403. doi: 10.1002/art.1780230402. [DOI] [PubMed] [Google Scholar]
  12. Eilat D., Fischel R. Recurrent utilization of genetic elements in V regions of antinucleic acid antibodies from autoimmune mice. J Immunol. 1991 Jul 1;147(1):361–368. [PubMed] [Google Scholar]
  13. Gangemi R. M., Singh A. K., Barrett K. J. Independently derived IgG anti-DNA autoantibodies from two lupus-prone mouse strains express a VH gene that is not present in most murine strains. J Immunol. 1993 Nov 1;151(9):4660–4671. [PubMed] [Google Scholar]
  14. Gu H., Tarlinton D., Müller W., Rajewsky K., Förster I. Most peripheral B cells in mice are ligand selected. J Exp Med. 1991 Jun 1;173(6):1357–1371. doi: 10.1084/jem.173.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris P. E., Maffei A., Liu Z., Colovai I., Reed E. F., Inghirami G., Suciu-Foca N. Naturally processed cytokine-derived peptide bound to HLA-class II molecules. J Immunol. 1993 Dec 1;151(11):5975–5983. [PubMed] [Google Scholar]
  16. Hartman A. B., Mallett C. P., Sheriff S., Smith-Gill S. J. Unusual joining sites in the H and L chains of an anti-lysozyme antibody. J Immunol. 1988 Aug 1;141(3):932–936. [PubMed] [Google Scholar]
  17. Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kofler R., Strohal R., Balderas R. S., Johnson M. E., Noonan D. J., Duchosal M. A., Dixon F. J., Theofilopoulos A. N. Immunoglobulin kappa light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. J Clin Invest. 1988 Sep;82(3):852–860. doi: 10.1172/JCI113689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehmann P. V., Forsthuber T., Miller A., Sercarz E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992 Jul 9;358(6382):155–157. doi: 10.1038/358155a0. [DOI] [PubMed] [Google Scholar]
  20. Maeji N. J., Bray A. M., Geysen H. M. Multi-pin peptide synthesis strategy for T cell determinant analysis. J Immunol Methods. 1990 Nov 6;134(1):23–33. doi: 10.1016/0022-1759(90)90108-8. [DOI] [PubMed] [Google Scholar]
  21. Mohan C., Adams S., Stanik V., Datta S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. 1993 May 1;177(5):1367–1381. doi: 10.1084/jem.177.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Naiki M., Chiang B. L., Cawley D., Ansari A., Rozzo S. J., Kotzin B. L., Zlotnik A., Gershwin M. E. Generation and characterization of cloned T helper cell lines for anti-DNA responses in NZB.H-2bm12 mice. J Immunol. 1992 Dec 15;149(12):4109–4115. [PubMed] [Google Scholar]
  23. Nygard N. R., McCarthy D. M., Schiffenbauer J., Schwartz B. D. Mixed haplotypes and autoimmunity. Immunol Today. 1993 Feb;14(2):53–56. doi: 10.1016/0167-5699(93)90058-s. [DOI] [PubMed] [Google Scholar]
  24. Ohnishi K., Ebling F. M., Mitchell B., Singh R. R., Hahn B. H., Tsao B. P. Comparison of pathogenic and non-pathogenic murine antibodies to DNA: antigen binding and structural characteristics. Int Immunol. 1994 Jun;6(6):817–830. doi: 10.1093/intimm/6.6.817. [DOI] [PubMed] [Google Scholar]
  25. Panosian-Sahakian N., Klotz J. L., Ebling F., Kronenberg M., Hahn B. Diversity of Ig V gene segments found in anti-DNA autoantibodies from a single (NZB x NZW)F1 mouse. J Immunol. 1989 Jun 15;142(12):4500–4506. [PubMed] [Google Scholar]
  26. Puccetti A., Koizumi T., Migliorini P., André-Schwartz J., Barrett K. J., Schwartz R. S. An immunoglobulin light chain from a lupus-prone mouse induces autoantibodies in normal mice. J Exp Med. 1990 Jun 1;171(6):1919–1930. doi: 10.1084/jem.171.6.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Radic M. Z., Mascelli M. A., Erikson J., Shan H., Shlomchik M., Weigert M. Structural patterns in anti-DNA antibodies from MRL/lpr mice. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 2):933–946. doi: 10.1101/sqb.1989.054.01.108. [DOI] [PubMed] [Google Scholar]
  28. Rudensky AYu, Preston-Hurlburt P., Hong S. C., Barlow A., Janeway C. A., Jr Sequence analysis of peptides bound to MHC class II molecules. Nature. 1991 Oct 17;353(6345):622–627. doi: 10.1038/353622a0. [DOI] [PubMed] [Google Scholar]
  29. Singh R. R., Kumar V., Ebling F. M., Southwood S., Sette A., Sercarz E. E., Hahn B. H. T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine systemic lupus erythematosus. J Exp Med. 1995 Jun 1;181(6):2017–2027. doi: 10.1084/jem.181.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]
  31. Tillman D. M., Jou N. T., Hill R. J., Marion T. N. Both IgM and IgG anti-DNA antibodies are the products of clonally selective B cell stimulation in (NZB x NZW)F1 mice. J Exp Med. 1992 Sep 1;176(3):761–779. doi: 10.1084/jem.176.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tsao B. P., Ebling F. M., Roman C., Panosian-Sahakian N., Calame K., Hahn B. H. Structural characteristics of the variable regions of immunoglobulin genes encoding a pathogenic autoantibody in murine lupus. J Clin Invest. 1990 Feb;85(2):530–540. doi: 10.1172/JCI114469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Walker S. E., Hewett J. E. Responses to T-cell and B-cell mitogens in autoimmune Palmerston North and NZB/NZW mice. Clin Immunol Immunopathol. 1984 Mar;30(3):469–478. doi: 10.1016/0090-1229(84)90032-1. [DOI] [PubMed] [Google Scholar]
  34. Weiss S., Bogen B. B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc Natl Acad Sci U S A. 1989 Jan;86(1):282–286. doi: 10.1073/pnas.86.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weiss S., Bogen B. MHC class II-restricted presentation of intracellular antigen. Cell. 1991 Feb 22;64(4):767–776. doi: 10.1016/0092-8674(91)90506-t. [DOI] [PubMed] [Google Scholar]
  36. Yurin V. L., Rudensky A. Y., Mazel S. M., Blechman J. M. Immunoglobulin-specific T-B cell interaction. II. T cell clones recognize the processed form of B cells' own surface immunoglobulin in the context of the major histocompatibility complex class II molecule. Eur J Immunol. 1989 Sep;19(9):1685–1691. doi: 10.1002/eji.1830190924. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES