Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Dec;96(6):2997–3004. doi: 10.1172/JCI118372

Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis.

Y Zhang 1, B Doranz 1, J R Yankaskas 1, J F Engelhardt 1
PMCID: PMC186012  PMID: 8675672

Abstract

Intracellular dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) has been proposed to alter endosomal acidification. The most widely studied consequence of this defect has been alterations in the biochemical properties of cystic fibrosis (CF) respiratory mucus glycoproteins. However, studies confirming the existence of mucous processing defects in CF have been hindered by the lack of in vivo animal models by which to test these hypotheses in the absence of secondary effects of chronic bacterial infection. The human bronchial xenograft model has been useful in evaluating the pathophysiologic differences between CF and non-CF airway epithelium, in the absence of secondary disease effects such as goblet cell hyperplasia. In this study we sought to compare the extent of sulfation within secreted mucus glycoproteins from CF and non-CF human bronchial xenografts. Cumulative results of xenografts generated from 13 independent CF tissue samples demonstrated a statistically significant higher level of sulfation (1.7 +/- 0.18, P < 0.026) as compared to non-CF paired controls. Such findings add to the growing body of knowledge that primary defects in sulfation exist in CF respiratory mucin. Correlation of genotype with the extent of mucus sulfation revealed two categories of CF tissues with statistically different mucus sulfation profiles. Results from these studies demonstrated a 2.0 +/- 0.15-fold higher level of mucus sulfation produced from xenografts of five defined CF genotypes as compared to non-CF controls (P < 0.004, n= 10). Interestingly, three CF samples for which one mutant allele remained undefined (deltaoff8/unknown or G551D/unknown) demonstrated no statistical difference in the level of sulfation as compared with matched non-CF controls (n= 3). This as yet unknown allele was not identified within a screen for the 26 most common CF mutations. These results provide preliminary evidence for allelic variation within the CF population which may begin to elucidate the structure-function of CFTR with regards to intracellular mucus processing defects.

Full text

PDF
2997

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991 Jul 4;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  2. Boat T. F., Cheng P. W. Biochemistry of airway mucus secretions. Fed Proc. 1980 Nov;39(13):3067–3074. [PubMed] [Google Scholar]
  3. Boat T. F., Cheng P. W., Iyer R. N., Carlson D. M., Polony I. Human respiratory tract secretion. Mucous glycoproteins of nonpurulent tracheobronchial secretions, and sputum of patients with bronchitis and cystic fibrosis. Arch Biochem Biophys. 1976 Nov;177(1):95–104. doi: 10.1016/0003-9861(76)90419-7. [DOI] [PubMed] [Google Scholar]
  4. Boucher R. C., Knowles M. R., Johnson L. G., Olsen J. C., Pickles R., Wilson J. M., Engelhardt J., Yang Y., Grossman M. Gene therapy for cystic fibrosis using E1-deleted adenovirus: a phase I trial in the nasal cavity. The University of North Carolina at Chapel Hill. Hum Gene Ther. 1994 May;5(5):615–639. doi: 10.1089/hum.1994.5.5-615. [DOI] [PubMed] [Google Scholar]
  5. Boucher R. C., Stutts M. J., Knowles M. R., Cantley L., Gatzy J. T. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986 Nov;78(5):1245–1252. doi: 10.1172/JCI112708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradbury N. A., Jilling T., Berta G., Sorscher E. J., Bridges R. J., Kirk K. L. Regulation of plasma membrane recycling by CFTR. Science. 1992 Apr 24;256(5056):530–532. doi: 10.1126/science.1373908. [DOI] [PubMed] [Google Scholar]
  7. Bradbury N. A., Jilling T., Kirk K. L., Bridges R. J. Regulated endocytosis in a chloride secretory epithelial cell line. Am J Physiol. 1992 Mar;262(3 Pt 1):C752–C759. doi: 10.1152/ajpcell.1992.262.3.C752. [DOI] [PubMed] [Google Scholar]
  8. Cheng P. W., Sherman J. M., Boat T. F., Bruce M. Quantitation of radiolabeled mucous glycoproteins secreted by tracheal explants. Anal Biochem. 1981 Nov 1;117(2):301–306. doi: 10.1016/0003-2697(81)90782-x. [DOI] [PubMed] [Google Scholar]
  9. Engelhardt J. F., Schlossberg H., Yankaskas J. R., Dudus L. Progenitor cells of the adult human airway involved in submucosal gland development. Development. 1995 Jul;121(7):2031–2046. doi: 10.1242/dev.121.7.2031. [DOI] [PubMed] [Google Scholar]
  10. Engelhardt J. F., Yang Y., Stratford-Perricaudet L. D., Allen E. D., Kozarsky K., Perricaudet M., Yankaskas J. R., Wilson J. M. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat Genet. 1993 May;4(1):27–34. doi: 10.1038/ng0593-27. [DOI] [PubMed] [Google Scholar]
  11. Engelhardt J. F., Yankaskas J. R., Wilson J. M. In vivo retroviral gene transfer into human bronchial epithelia of xenografts. J Clin Invest. 1992 Dec;90(6):2598–2607. doi: 10.1172/JCI116155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  13. Goldman M. J., Yang Y., Wilson J. M. Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. Nat Genet. 1995 Feb;9(2):126–131. doi: 10.1038/ng0295-126. [DOI] [PubMed] [Google Scholar]
  14. Govan J. R., Nelson J. W. Microbiology of cystic fibrosis lung infections: themes and issues. J R Soc Med. 1993;86 (Suppl 20):11–18. [PMC free article] [PubMed] [Google Scholar]
  15. Gupta R., Jentoft N. The structure of tracheobronchial mucins from cystic fibrosis and control patients. J Biol Chem. 1992 Feb 15;267(5):3160–3167. [PubMed] [Google Scholar]
  16. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  17. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  18. Prince A. Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract. Microb Pathog. 1992 Oct;13(4):251–260. doi: 10.1016/0882-4010(92)90035-m. [DOI] [PubMed] [Google Scholar]
  19. Quinton P. M. Viscosity versus composition in airway pathology. Am J Respir Crit Care Med. 1994 Jan;149(1):6–7. doi: 10.1164/ajrccm.149.1.8111599. [DOI] [PubMed] [Google Scholar]
  20. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  21. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  22. Rose M. C. Epithelial mucous glycoproteins and cystic fibrosis. Horm Metab Res. 1988 Oct;20(10):601–608. doi: 10.1055/s-2007-1010896. [DOI] [PubMed] [Google Scholar]
  23. Rosenfeld M. A., Yoshimura K., Trapnell B. C., Yoneyama K., Rosenthal E. R., Dalemans W., Fukayama M., Bargon J., Stier L. E., Stratford-Perricaudet L. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell. 1992 Jan 10;68(1):143–155. doi: 10.1016/0092-8674(92)90213-v. [DOI] [PubMed] [Google Scholar]
  24. Roussel P., Lamblin G., Degand P. Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis. J Biol Chem. 1975 Mar 25;250(6):2114–2122. [PubMed] [Google Scholar]
  25. Sajjan U., Reisman J., Doig P., Irvin R. T., Forstner G., Forstner J. Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest. 1992 Feb;89(2):657–665. doi: 10.1172/JCI115632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wilson J. M., Engelhardt J. F., Grossman M., Simon R. H., Yang Y. Gene therapy of cystic fibrosis lung disease using E1 deleted adenoviruses: a phase I trial. Hum Gene Ther. 1994 Apr;5(4):501–519. doi: 10.1089/hum.1994.5.4-501. [DOI] [PubMed] [Google Scholar]
  27. Zabner J., Couture L. A., Gregory R. J., Graham S. M., Smith A. E., Welsh M. J. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993 Oct 22;75(2):207–216. doi: 10.1016/0092-8674(93)80063-k. [DOI] [PubMed] [Google Scholar]
  28. Zabner J., Petersen D. M., Puga A. P., Graham S. M., Couture L. A., Keyes L. D., Lukason M. J., St George J. A., Gregory R. J., Smith A. E. Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nat Genet. 1994 Jan;6(1):75–83. doi: 10.1038/ng0194-75. [DOI] [PubMed] [Google Scholar]
  29. Zach M. S. Lung disease in cystic fibrosis--an updated concept. Pediatr Pulmonol. 1990;8(3):188–202. doi: 10.1002/ppul.1950080311. [DOI] [PubMed] [Google Scholar]
  30. al-Awqati Q., Barasch J., Landry D. Chloride channels of intracellular organelles and their potential role in cystic fibrosis. J Exp Biol. 1992 Nov;172:245–266. doi: 10.1242/jeb.172.1.245. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES