Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Jan;62(1):194–202. doi: 10.1128/iai.62.1.194-202.1994

Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans.

S M Levitz 1, M P Dupont 1, E H Smail 1
PMCID: PMC186086  PMID: 8262627

Abstract

Lymphocytes constitute a critical component of host defenses against cryptococcosis. Previously, we demonstrated that human lymphocytes cultured with interleukin-2 formed conjugates with, and directly inhibited the growth of, Cryptococcus neoformans. Here, we explore the anticryptococcal activity of freshly isolated, highly purified populations of human peripheral blood lymphocytes. Lymphocytes were incubated with encapsulated C. neoformans for 24 h, after which the lymphocytes were lysed, dilutions and spread plates were made, and CFU were counted. Fungistasis was determined by comparing growth in wells with and without lymphocytes. Nylon wool-nonadherent peripheral blood mononuclear cells (NWNA PBMC) were highly fungistatic, even if either T cells or natural killer (NK) cells were depleted by panning. A mixed population of T cells and NK cells, obtained by rosetting NWNA PBMC with sheep erythrocytes, completely inhibited cryptococcal growth, whereas the nonrosetting cells had little fungistatic activity. CD4+, CD8+, and CD16/56+ lymphocytes, isolated by positive immunoselection, had potent growth-inhibitory activity. In contrast, purified B cells had no activity. Fungistasis was seen even in the absence of opsonins. Antifungal activity was markedly diminished when surface receptors on NWNA PBMC were cleaved by treatment with trypsin or bromelain. Supernatants from stimulated lymphocytes or concentrated lymphocyte sonicates were not active. Lymphocyte-mediated fungistasis was seen with two different strains of C. neoformans. CD4+, CD8+, and CD16/56+ lymphocytes formed conjugates with C. neoformans, as observed under Nomarski differential interference contrast microscopy and videomicroscopy. These data demonstrate that freshly isolated peripheral blood T cells and NK cells have the capacity to bind and directly inhibit the growth of C. neoformans.

Full text

PDF
194

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER R. D., HAUGEN R. K. Tissue changes and tissue diagnosis in cryptococcosis; a study of 26 cases. Am J Clin Pathol. 1955 Jan;25(1):14–24. doi: 10.1093/ajcp/25.1.14. [DOI] [PubMed] [Google Scholar]
  2. Berke G. T-cell-mediated cytotoxicity. Curr Opin Immunol. 1991 Jun;3(3):320–325. doi: 10.1016/0952-7915(91)90031-u. [DOI] [PubMed] [Google Scholar]
  3. Chuck S. L., Sande M. A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989 Sep 21;321(12):794–799. doi: 10.1056/NEJM198909213211205. [DOI] [PubMed] [Google Scholar]
  4. Diamond R. D., Allison A. C. Nature of the effector cells responsible for antibody-dependent cell-mediated killing of Cryptococcus neoformans. Infect Immun. 1976 Sep;14(3):716–720. doi: 10.1128/iai.14.3.716-720.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duncan R. A., von Reyn C. F., Alliegro G. M., Toossi Z., Sugar A. M., Levitz S. M. Idiopathic CD4+ T-lymphocytopenia--four patients with opportunistic infections and no evidence of HIV infection. N Engl J Med. 1993 Feb 11;328(6):393–398. doi: 10.1056/NEJM199302113280604. [DOI] [PubMed] [Google Scholar]
  6. Flesch I. E., Schwamberger G., Kaufmann S. H. Fungicidal activity of IFN-gamma-activated macrophages. Extracellular killing of Cryptococcus neoformans. J Immunol. 1989 May 1;142(9):3219–3224. [PubMed] [Google Scholar]
  7. Goldfarb R. H., Wasserman K., Herberman R. B., Kitson R. P. Nongranular proteolytic enzymes of rat IL-2-activated natural killer cells. I. Subcellular localization and functional role. J Immunol. 1992 Sep 15;149(6):2061–2068. [PubMed] [Google Scholar]
  8. HOWARD D. H. Some factors which affect the initiation of growth of Cryptococcus neoformans. J Bacteriol. 1961 Sep;82:430–435. doi: 10.1128/jb.82.3.430-435.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hale L. P., Haynes B. F. Bromelain treatment of human T cells removes CD44, CD45RA, E2/MIC2, CD6, CD7, CD8, and Leu 8/LAM1 surface molecules and markedly enhances CD2-mediated T cell activation. J Immunol. 1992 Dec 15;149(12):3809–3816. [PubMed] [Google Scholar]
  10. Hidore M. R., Nabavi N., Reynolds C. W., Henkart P. A., Murphy J. W. Cytoplasmic components of natural killer cells limit the growth of Cryptococcus neoformans. J Leukoc Biol. 1990 Jul;48(1):15–26. doi: 10.1002/jlb.48.1.15. [DOI] [PubMed] [Google Scholar]
  11. Hidore M. R., Nabavi N., Sonleitner F., Murphy J. W. Murine natural killer cells are fungicidal to Cryptococcus neoformans. Infect Immun. 1991 May;59(5):1747–1754. doi: 10.1128/iai.59.5.1747-1754.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hill J. O. CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J Exp Med. 1992 Jun 1;175(6):1685–1695. doi: 10.1084/jem.175.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill J. O., Harmsen A. G. Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J Exp Med. 1991 Mar 1;173(3):755–758. doi: 10.1084/jem.173.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huffnagle G. B., Yates J. L., Lipscomb M. F. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J Exp Med. 1991 Apr 1;173(4):793–800. doi: 10.1084/jem.173.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  16. Khan I. A., Smith K. A., Kasper L. H. Induction of antigen-specific parasiticidal cytotoxic T cell splenocytes by a major membrane protein (P30) of Toxoplasma gondii. J Immunol. 1988 Nov 15;141(10):3600–3605. [PubMed] [Google Scholar]
  17. Kozel T. R., Gotschlich E. C. The capsule of cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982 Oct;129(4):1675–1680. [PubMed] [Google Scholar]
  18. Levitz S. M. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophage colony-stimulating factor to inhibit Cryptococcus neoformans. Infect Immun. 1991 Oct;59(10):3393–3397. doi: 10.1128/iai.59.10.3393-3397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levitz S. M., DiBenedetto D. J. Differential stimulation of murine resident peritoneal cells by selectively opsonized encapsulated and acapsular Cryptococcus neoformans. Infect Immun. 1988 Oct;56(10):2544–2551. doi: 10.1128/iai.56.10.2544-2551.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levitz S. M., Dupont M. P. Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J Clin Invest. 1993 Apr;91(4):1490–1498. doi: 10.1172/JCI116354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levitz S. M., Farrell T. P. Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun. 1990 May;58(5):1201–1209. doi: 10.1128/iai.58.5.1201-1209.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levitz S. M., Farrell T. P., Maziarz R. T. Killing of Cryptococcus neoformans by human peripheral blood mononuclear cells stimulated in culture. J Infect Dis. 1991 May;163(5):1108–1113. doi: 10.1093/infdis/163.5.1108. [DOI] [PubMed] [Google Scholar]
  23. Levitz S. M., Tabuni A. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J Clin Invest. 1991 Feb;87(2):528–535. doi: 10.1172/JCI115027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levitz S. M. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev Infect Dis. 1991 Nov-Dec;13(6):1163–1169. doi: 10.1093/clinids/13.6.1163. [DOI] [PubMed] [Google Scholar]
  25. Markham R. B., Goellner J., Pier G. B. In vitro T cell-mediated killing of Pseudomonas aeruginosa. I. Evidence that a lymphokine mediates killing. J Immunol. 1984 Aug;133(2):962–968. [PubMed] [Google Scholar]
  26. Markham R. B., Pier G. B., Goellner J. J., Mizel S. B. In vitro T cell-mediated killing of Pseudomonas aeruginosa. II. The role of macrophages and T cell subsets in T cell killing. J Immunol. 1985 Jun;134(6):4112–4117. [PubMed] [Google Scholar]
  27. Miller M. F., Mitchell T. G., Storkus W. J., Dawson J. R. Human natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody. Infect Immun. 1990 Mar;58(3):639–645. doi: 10.1128/iai.58.3.639-645.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mody C. H., Lipscomb M. F., Street N. E., Toews G. B. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol. 1990 Feb 15;144(4):1472–1477. [PubMed] [Google Scholar]
  29. Murphy J. W., Hidore M. R., Wong S. C. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J Clin Invest. 1993 Apr;91(4):1553–1566. doi: 10.1172/JCI116361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Murphy J. W., McDaniel D. O. In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans. J Immunol. 1982 Apr;128(4):1577–1583. [PubMed] [Google Scholar]
  31. Ownby D. R., McCullough J. An improved technique for separating rosetted from non-rosetted lymphocytes. J Immunol Methods. 1983 Feb 11;56(3):281–284. doi: 10.1016/s0022-1759(83)80017-9. [DOI] [PubMed] [Google Scholar]
  32. Perfect J. R. Cryptococcosis. Infect Dis Clin North Am. 1989 Mar;3(1):77–102. [PubMed] [Google Scholar]
  33. Powderly W. G., Pier G. B., Markham R. B. T lymphocyte-mediated protection against Pseudomonas aeruginosa infection in granulocytopenic mice. J Clin Invest. 1986 Aug;78(2):375–380. doi: 10.1172/JCI112587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Robertson M. J., Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990 Dec 15;76(12):2421–2438. [PubMed] [Google Scholar]
  35. Spruyt L. L., Glennie M. J., Beyers A. D., Williams A. F. Signal transduction by the CD2 antigen in T cells and natural killer cells: requirement for expression of a functional T cell receptor or binding of antibody Fc to the Fc receptor, Fc gamma RIIIA (CD16). J Exp Med. 1991 Dec 1;174(6):1407–1415. doi: 10.1084/jem.174.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thiele D. L., Lipsky P. E. Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from L-leucine methyl ester by monocytes or polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2468–2472. doi: 10.1073/pnas.82.8.2468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thiele D. L., Lipsky P. E. The role of cell surface recognition structures in the initiation of MHC-unrestricted 'promiscuous' killing by T cells. Immunol Today. 1989 Nov;10(11):375–381. doi: 10.1016/0167-5699(89)90271-5. [DOI] [PubMed] [Google Scholar]
  38. Trenn G., Takayama H., Sitkovsky M. V. Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes. Nature. 1987 Nov 5;330(6143):72–74. doi: 10.1038/330072a0. [DOI] [PubMed] [Google Scholar]
  39. Vachino G., Gelfand J. A., Atkins M. B., Tamerius J. D., Demchak P., Mier J. W. Complement activation in cancer patients undergoing immunotherapy with interleukin-2 (IL-2): binding of complement and C-reactive protein by IL-2-activated lymphocytes. Blood. 1991 Nov 15;78(10):2505–2513. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES