Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Jan;62(1):259–265. doi: 10.1128/iai.62.1.259-265.1994

Effect of lipopolysaccharide (LPS) chain length on interactions of bactericidal/permeability-increasing protein and its bioactive 23-kilodalton NH2-terminal fragment with isolated LPS and intact Proteus mirabilis and Escherichia coli.

C Capodici 1, S Chen 1, Z Sidorczyk 1, P Elsbach 1, J Weiss 1
PMCID: PMC186095  PMID: 8262637

Abstract

The target-specific cytotoxicity for gram-negative bacteria and the endotoxin-neutralizing activity of the 55-kDa bactericidal/Permeability-increasing protein (BPI) and its bioactive 23-kDa NH2-terminal fragment depend on the strong attraction of BPI for the lipid A region of lipopolysaccharides (LPS). We have shown before that smooth gram-negative bacteria with long-chain LPS are more resistant to BPI (especially holo-BPI) than are rough strains. It has been suggested that the high BPI resistance of some gram-negative bacteria, such as Proteus mirabilis, might also reflect the structural diversity of lipid A. To explore this possibility, we compared the antibacterial activity and binding of natural and recombinant holo-BPI and a recombinant NH2-terminal fragment (rBPI-23) to an isogenic rough (Re-LPS chemotype) and a smooth (S-LPS chemotype) strain of P. mirabilis and to LPS isolated from the two strains. Holo-BPI and rBPI-23 were both potently active against the Re strain of P. mirabilis (90% lethal dose, 20 nM). In contrast, the smooth strain was > or = 100 times more resistant to holo-BPI but only 10 times more resistant to rBPI-23. rBPI-23 was also more potent against several Escherichia coli strains from clinical bacteremia isolates. Differences in the antibacterial potency of BPI toward the Re and S strains of P. mirabilis correlated with differences in the binding of holo-BPI and rBPI-23 to these bacteria. In contrast, the binding of biosynthetically (in vitro transcribed and translated) 35S-labeled holo-BPI and NH2-terminal fragment to isolated Re- and S-LPS from P. mirabilis in solution was similar. Moreover, in the Limulus amebocyte lysate assay, holo-BPI and rBPI-23 potently neutralized both forms of LPS with equal effectiveness. Together, these results strongly suggest that BPI recognizes Proteus lipid A and that the relative resistance of (smooth) P. mirabilis to holo-BPI is due to the inhibitory effect of long polysaccharide chains of tightly packed LPS in the envelope.

Full text

PDF
259

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DuPont H. L., Spink W. W. Infections due to gram-negative organisms: an analysis of 860 patients with bacteremia at the University of Minnesota Medical Center, 1958-1966. Medicine (Baltimore) 1969 Jul;48(4):307–332. doi: 10.1097/00005792-196907000-00003. [DOI] [PubMed] [Google Scholar]
  2. Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
  3. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  4. Gazzano-Santoro H., Parent J. B., Grinna L., Horwitz A., Parsons T., Theofan G., Elsbach P., Weiss J., Conlon P. J. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun. 1992 Nov;60(11):4754–4761. doi: 10.1128/iai.60.11.4754-4761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gray P. W., Flaggs G., Leong S. R., Gumina R. J., Weiss J., Ooi C. E., Elsbach P. Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J Biol Chem. 1989 Jun 5;264(16):9505–9509. [PubMed] [Google Scholar]
  6. Hovde C. J., Gray B. H. Characterization of a protein from normal human polymorphonuclear leukocytes with bactericidal activity against Pseudomonas aeruginosa. Infect Immun. 1986 Oct;54(1):142–148. doi: 10.1128/iai.54.1.142-148.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacobson S. H., Ostenson C. G., Tullus K., Brauner A. Serum resistance in Escherichia coli strains causing acute pyelonephritis and bacteraemia. APMIS. 1992 Feb;100(2):147–153. [PubMed] [Google Scholar]
  8. Kaca W., Radziejewska-Lebrecht J., Bhat U. R. Effect of polymyxins on the lipopolysaccharide-defective mutants of Proteus mirabilis. Microbios. 1990;61(246):23–32. [PubMed] [Google Scholar]
  9. Kastowsky M., Gutberlet T., Bradaczek H. Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. J Bacteriol. 1992 Jul;174(14):4798–4806. doi: 10.1128/jb.174.14.4798-4806.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kotelko K., Gromska W., Papierz M., Szer K., Krajewska D., Sidorczyk Z. The constitution of "core" in Proteus lipopolyssaccharides. J Hyg Epidemiol Microbiol Immunol. 1974;18(4):405–410. [PubMed] [Google Scholar]
  11. Labischinski H., Barnickel G., Bradaczek H., Naumann D., Rietschel E. T., Giesbrecht P. High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane. J Bacteriol. 1985 Apr;162(1):9–20. doi: 10.1128/jb.162.1.9-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x. [DOI] [PubMed] [Google Scholar]
  14. Mannion B. A., Kalatzis E. S., Weiss J., Elsbach P. Preferential binding of the neutrophil cytoplasmic granule-derived bactericidal/permeability increasing protein to target bacteria. Implications and use as a means of purification. J Immunol. 1989 Apr 15;142(8):2807–2812. [PubMed] [Google Scholar]
  15. Marra M. N., Wilde C. G., Collins M. S., Snable J. L., Thornton M. B., Scott R. W. The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol. 1992 Jan 15;148(2):532–537. [PubMed] [Google Scholar]
  16. Marra M. N., Wilde C. G., Griffith J. E., Snable J. L., Scott R. W. Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity. J Immunol. 1990 Jan 15;144(2):662–666. [PubMed] [Google Scholar]
  17. Ooi C. E., Weiss J. Bidirectional movement of a nascent polypeptide across microsomal membranes reveals requirements for vectorial translocation of proteins. Cell. 1992 Oct 2;71(1):87–96. doi: 10.1016/0092-8674(92)90268-h. [DOI] [PubMed] [Google Scholar]
  18. Ooi C. E., Weiss J., Doerfler M. E., Elsbach P. Endotoxin-neutralizing properties of the 25 kD N-terminal fragment and a newly isolated 30 kD C-terminal fragment of the 55-60 kD bactericidal/permeability-increasing protein of human neutrophils. J Exp Med. 1991 Sep 1;174(3):649–655. doi: 10.1084/jem.174.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ooi C. E., Weiss J., Elsbach P., Frangione B., Mannion B. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem. 1987 Nov 5;262(31):14891–14894. [PubMed] [Google Scholar]
  20. Parent J. B., Gazzano-Santoro H., Wood D. M., Lim E., Pruyne P. T., Trown P. W., Conlon P. J. Reactivity of monoclonal antibody E5 with endotoxin. II. Binding to short- and long-chain smooth lipopolysaccharides. Circ Shock. 1992 Sep;38(1):63–73. [PubMed] [Google Scholar]
  21. Pereira H. A., Spitznagel J. K., Winton E. F., Shafer W. M., Martin L. E., Guzman G. S., Pohl J., Scott R. W., Marra M. N., Kinkade J. M., Jr The ontogeny of a 57-Kd cationic antimicrobial protein of human polymorphonuclear leukocytes: localization to a novel granule population. Blood. 1990 Aug 15;76(4):825–834. [PubMed] [Google Scholar]
  22. SIMON E. J., VANPRAAG D. INHIBITION OF RNA SYNTHESIS IN ESCHERICHIA COLI BY LEVORPHANOL. Proc Natl Acad Sci U S A. 1964 May;51:877–883. doi: 10.1073/pnas.51.5.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shafer W. M., Engle S. A., Martin L. E., Spitznagel J. K. Killing of Proteus mirabilis by polymorphonuclear leukocyte granule proteins: evidence for species specificity by antimicrobial proteins. Infect Immun. 1988 Jan;56(1):51–53. doi: 10.1128/iai.56.1.51-53.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sidorczyk Z., Kaca W., Brade H., Rietschel E. T., Sinnwell V., Zähringer U. Isolation and structural characterization of an 8-O-(4-amino-4-deoxy-beta-L-arabinopyranosyl)-3-deoxy-D-manno- octulosonic acid disaccharide in the lipopolysaccharide of a Proteus mirabilis deep rough mutant. Eur J Biochem. 1987 Oct 15;168(2):269–273. doi: 10.1111/j.1432-1033.1987.tb13416.x. [DOI] [PubMed] [Google Scholar]
  25. Sidorczyk Z., Zähringer U., Rietschel E. T. Chemical structure of the lipid A component of the lipopolysaccharide from a Proteus mirabilis Re-mutant. Eur J Biochem. 1983 Dec 1;137(1-2):15–22. doi: 10.1111/j.1432-1033.1983.tb07789.x. [DOI] [PubMed] [Google Scholar]
  26. Wasiluk K. R., Skubitz K. M., Gray B. H. Comparison of granule proteins from human polymorphonuclear leukocytes which are bactericidal toward Pseudomonas aeruginosa. Infect Immun. 1991 Nov;59(11):4193–4200. doi: 10.1128/iai.59.11.4193-4200.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss J., Beckerdite-Quagliata S., Elsbach P. Resistance of gram-negative bacteria to purified bactericidal leukocyte proteins: relation to binding and bacterial lipopolysaccharide structure. J Clin Invest. 1980 Mar;65(3):619–628. doi: 10.1172/JCI109707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiss J., Elsbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978 Apr 25;253(8):2664–2672. [PubMed] [Google Scholar]
  29. Weiss J., Elsbach P., Shu C., Castillo J., Grinna L., Horwitz A., Theofan G. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest. 1992 Sep;90(3):1122–1130. doi: 10.1172/JCI115930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weiss J., Franson R. C., Beckerdite S., Schmeidler K., Elsbach P. Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. J Clin Invest. 1975 Jan;55(1):33–42. doi: 10.1172/JCI107915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weiss J., Hutzler M., Kao L. Environmental modulation of lipopolysaccharide chain length alters the sensitivity of Escherichia coli to the neutrophil bactericidal/permeability-increasing protein. Infect Immun. 1986 Feb;51(2):594–599. doi: 10.1128/iai.51.2.594-599.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weiss J., Muello K., Victor M., Elsbach P. The role of lipopolysaccharides in the action of the bactericidal/permeability-increasing neutrophil protein on the bacterial envelope. J Immunol. 1984 Jun;132(6):3109–3115. [PubMed] [Google Scholar]
  33. Weiss J., Olsson I. Cellular and subcellular localization of the bactericidal/permeability-increasing protein of neutrophils. Blood. 1987 Feb;69(2):652–659. [PubMed] [Google Scholar]
  34. Wood D. M., Parent J. B., Gazzano-Santoro H., Lim E., Pruyne P. T., Watkins J. M., Spoor E. S., Reardan D. T., Trown P. W., Conlon P. J. Reactivity of monoclonal antibody E5 with endotoxin. I. Binding to lipid A and rough lipopolysaccharides. Circ Shock. 1992 Sep;38(1):55–62. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES