Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Jan;148(1):241–248.

Effects of CD11b/18 monoclonal antibody on rats with permanent middle cerebral artery occlusion.

J H Garcia 1, K F Liu 1, M P Bree 1
PMCID: PMC1861617  PMID: 8546211

Abstract

The progression of a lesion from ischemic injury to infarct, after the permanent occlusion of a middle cerebral artery, may be influenced by the influx of leukocytes into the ischemic territory. We aimed to evaluate the effectiveness of treating rats that had permanent middle cerebral artery occlusion with a single dose of an anti-CD11b/18 monoclonal antibody injected 1 hour after the arterial occlusion. To mimic the clinical situation of patients with ischemic strokes who may be treated within 1 hour of the ischemic event, the artery remained occluded. Forty-one adult Wistar rats had permanent middle cerebral artery occlusion, and one was subjected to a sham operation. One hour later, 22 rats received CD11b/18 monoclonal antibody and an additional 20 were injected either with a nonspecific antibody (n = 10) or a buffer solution (n = 10). Experiments were terminated at intervals ranging 12 to 96 hours after the arterial occlusion. Endpoints included neurological testing, daily evaluation of body weight, counts of white blood cells in the peripheral blood, measurement of the area of pallor in the ischemic hemisphere, counts of necrotic neurons, and counts of leukocytes sequestered in the ischemic hemisphere. In experiments terminated 12 hours after the arterial occlusion (n = 4), there were fewer necrotic neurons in the group treated with the CD11b/18 monoclonal antibody compared with the two controls (P < .05), but this difference was not reflected in the neurological scores. Numbers of necrotic neurons in experiments terminated > 12 hours later were not different among the three subgroups. White blood cell counts in peripheral blood were lower in animals with arterial occlusion injected with the monoclonal antibody CD11b/18 (P < .05); numbers of leukocytes sequestered in the ischemic hemisphere were not different in the three groups. Neither changes in body weight nor in the volume of the area of pallor were significantly different among the three groups.

Full text

PDF
241

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaout M. A. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990 Mar 1;75(5):1037–1050. [PubMed] [Google Scholar]
  2. Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804. doi: 10.1146/annurev.iy.11.040193.004003. [DOI] [PubMed] [Google Scholar]
  3. Chen H., Chopp M., Zhang R. L., Bodzin G., Chen Q., Rusche J. R., Todd R. F., 3rd Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol. 1994 Apr;35(4):458–463. doi: 10.1002/ana.410350414. [DOI] [PubMed] [Google Scholar]
  4. Chopp M., Zhang R. L., Chen H., Li Y., Jiang N., Rusche J. R. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994 Apr;25(4):869–876. doi: 10.1161/01.str.25.4.869. [DOI] [PubMed] [Google Scholar]
  5. Engler R. L., Schmid-Schönbein G. W., Pavelec R. S. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983 Apr;111(1):98–111. [PMC free article] [PubMed] [Google Scholar]
  6. Garcia J. H., Liu K. F., Relton J. K. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am J Pathol. 1995 Nov;147(5):1477–1486. [PMC free article] [PubMed] [Google Scholar]
  7. Garcia J. H., Liu K. F., Yoshida Y., Chen S., Lian J. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol. 1994 Sep;145(3):728–740. [PMC free article] [PubMed] [Google Scholar]
  8. Garcia J. H., Liu K. F., Yoshida Y., Lian J., Chen S., del Zoppo G. J. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994 Jan;144(1):188–199. [PMC free article] [PubMed] [Google Scholar]
  9. Garcia J. H., Wagner S., Liu K. F., Hu X. J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995 Apr;26(4):627–635. doi: 10.1161/01.str.26.4.627. [DOI] [PubMed] [Google Scholar]
  10. Garcia J. H., Yoshida Y., Chen H., Li Y., Zhang Z. G., Lian J., Chen S., Chopp M. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol. 1993 Feb;142(2):623–635. [PMC free article] [PubMed] [Google Scholar]
  11. Hill J., Lindsay T., Rusche J., Valeri C. R., Shepro D., Hechtman H. B. A Mac-1 antibody reduces liver and lung injury but not neutrophil sequestration after intestinal ischemia-reperfusion. Surgery. 1992 Aug;112(2):166–172. [PubMed] [Google Scholar]
  12. Kochanek P. M., Hallenbeck J. M. Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke. 1992 Sep;23(9):1367–1379. doi: 10.1161/01.str.23.9.1367. [DOI] [PubMed] [Google Scholar]
  13. McEver R. P. Leukocyte-endothelial cell interactions. Curr Opin Cell Biol. 1992 Oct;4(5):840–849. doi: 10.1016/0955-0674(92)90109-p. [DOI] [PubMed] [Google Scholar]
  14. Menger M. D., Messmer K. Die Mikrozirkulation des Skelettmuskels nach Ischämie und Reperfusion. Wien Med Wochenschr. 1993;143(7-8):148–158. [PubMed] [Google Scholar]
  15. Mori E., del Zoppo G. J., Chambers J. D., Copeland B. R., Arfors K. E. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke. 1992 May;23(5):712–718. doi: 10.1161/01.str.23.5.712. [DOI] [PubMed] [Google Scholar]
  16. Okada Y., Copeland B. R., Mori E., Tung M. M., Thomas W. S., del Zoppo G. J. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke. 1994 Jan;25(1):202–211. doi: 10.1161/01.str.25.1.202. [DOI] [PubMed] [Google Scholar]
  17. Simpson P. J., Fantone J. C., Mickelson J. K., Gallagher K. P., Lucchesi B. R. Identification of a time window for therapy to reduce experimental canine myocardial injury: suppression of neutrophil activation during 72 hours of reperfusion. Circ Res. 1988 Dec;63(6):1070–1079. doi: 10.1161/01.res.63.6.1070. [DOI] [PubMed] [Google Scholar]
  18. Simpson P. J., Todd R. F., 3rd, Fantone J. C., Mickelson J. K., Griffin J. D., Lucchesi B. R. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest. 1988 Feb;81(2):624–629. doi: 10.1172/JCI113364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simpson P. J., Todd R. F., 3rd, Mickelson J. K., Fantone J. C., Gallagher K. P., Lee K. A., Tamura Y., Cronin M., Lucchesi B. R. Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function. Circulation. 1990 Jan;81(1):226–237. doi: 10.1161/01.cir.81.1.226. [DOI] [PubMed] [Google Scholar]
  20. del Zoppo G. J., Schmid-Schönbein G. W., Mori E., Copeland B. R., Chang C. M. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991 Oct;22(10):1276–1283. doi: 10.1161/01.str.22.10.1276. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES