Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Feb;148(2):643–648.

Replication error phenotype and p53 gene mutation in lymphomas of mucosa-associated lymphoid tissue.

H Peng 1, G Chen 1, M Du 1, N Singh 1, P G Isaacson 1, L Pan 1
PMCID: PMC1861671  PMID: 8579126

Abstract

Low grade mucosa-associated lymphoid tissue (MALT) lymphomas commonly arise from a background of chronic inflammatory lesions and can transform into high grade tumors at a late stage. Because chronic inflammation is closely associated with genetic instability, which is one of the mechanisms leading to activation of oncogenes and inactivation of tumor suppressor genes, it is possible that genetic instability plays an important role in MALT lymphomagenesis. In this study, we have examined the frequency of replication error (RER+) phenotype, a newly defined manifestation of genetic instability, and its relationship to p53 mutations in 40 MALT lymphomas (16 high grade and 24 low grade). RER+ phenotype was detected in 21/40 (52.5%) MALT lymphomas (12/24, 50% in low grade; 9/16, 56.2% in high grade). Five of seven reactive lymphoid infiltrates adjacent to tumors also showed one microsatellite alteration, four of which were identified in the corresponding lymphoma lesions in the same patient. In five RER+ high grade lymphomas with low grade lesions, homogeneous and heterogeneous microsatellite alterations were observed between the two components. The same 40 cases were investigated for p53 gene mutations at exons 5 to 8 by PCR-SSCP and direct sequencing. p53 point mutations were found in 11 (27.5%) of the 40 cases. These mutations were statistically related to RER+ phenotype (P < 0.05). Our results demonstrate that the RER+ phenotype is a common genetic feature of MALT lymphomas. Genetic instability occurs throughout the spectrum of the lymphoma development and may be related to the accumulation of genetic aberrations such as p53 mutations. The observation of identical microsatellite alterations between the adjacent lymphoid infiltrates and their corresponding lymphomas provides genetic evidence for evolutionary link of the two lesions. The homogeneous and heterogeneous microsatellite alterations observed between low and high grade components indicate their clonal lineage and genetic diversity.

Full text

PDF
643

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedi G. C., Westra W. H., Farzadegan H., Pitha P. M., Sidransky D. Microsatellite instability in primary neoplasms from HIV + patients. Nat Med. 1995 Jan;1(1):65–68. doi: 10.1038/nm0195-65. [DOI] [PubMed] [Google Scholar]
  2. Glebov O. K., McKenzie K. E., White C. A., Sukumar S. Frequent p53 gene mutations and novel alleles in familial breast cancer. Cancer Res. 1994 Jul 15;54(14):3703–3709. [PubMed] [Google Scholar]
  3. Ionov Y., Peinado M. A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993 Jun 10;363(6429):558–561. doi: 10.1038/363558a0. [DOI] [PubMed] [Google Scholar]
  4. Isaacson P. G. Lymphomas of mucosa-associated lymphoid tissue (MALT). Histopathology. 1990 Jun;16(6):617–619. doi: 10.1111/j.1365-2559.1990.tb01173.x. [DOI] [PubMed] [Google Scholar]
  5. Jiricny J. Colon cancer and DNA repair: have mismatches met their match? Trends Genet. 1994 May;10(5):164–168. doi: 10.1016/0168-9525(94)90093-0. [DOI] [PubMed] [Google Scholar]
  6. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  7. Loeb L. A. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 1994 Oct 1;54(19):5059–5063. [PubMed] [Google Scholar]
  8. Merlo A., Mabry M., Gabrielson E., Vollmer R., Baylin S. B., Sidransky D. Frequent microsatellite instability in primary small cell lung cancer. Cancer Res. 1994 Apr 15;54(8):2098–2101. [PubMed] [Google Scholar]
  9. Orlow I., Lianes P., Lacombe L., Dalbagni G., Reuter V. E., Cordon-Cardo C. Chromosome 9 allelic losses and microsatellite alterations in human bladder tumors. Cancer Res. 1994 Jun 1;54(11):2848–2851. [PubMed] [Google Scholar]
  10. Pan L. X., Diss T. C., Peng H. Z., Isaacson P. G. Clonality analysis of defined B-cell populations in archival tissue sections using microdissection and the polymerase chain reaction. Histopathology. 1994 Apr;24(4):323–327. doi: 10.1111/j.1365-2559.1994.tb00532.x. [DOI] [PubMed] [Google Scholar]
  11. Parsons R., Li G. M., Longley M. J., Fang W. H., Papadopoulos N., Jen J., de la Chapelle A., Kinzler K. W., Vogelstein B., Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993 Dec 17;75(6):1227–1236. doi: 10.1016/0092-8674(93)90331-j. [DOI] [PubMed] [Google Scholar]
  12. Peng H. Z., Isaacson P. G., Diss T. C., Pan L. X. Multiple PCR analyses on trace amounts of DNA extracted from fresh and paraffin wax embedded tissues after random hexamer primer PCR amplification. J Clin Pathol. 1994 Jul;47(7):605–608. doi: 10.1136/jcp.47.7.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rhyu M. G., Park W. S., Meltzer S. J. Microsatellite instability occurs frequently in human gastric carcinoma. Oncogene. 1994 Jan;9(1):29–32. [PubMed] [Google Scholar]
  14. Rosin M. P., Anwar W. A., Ward A. J. Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res. 1994 Apr 1;54(7 Suppl):1929s–1933s. [PubMed] [Google Scholar]
  15. Smith M. L., Chen I. T., Zhan Q., Bae I., Chen C. Y., Gilmer T. M., Kastan M. B., O'Connor P. M., Fornace A. J., Jr Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 1994 Nov 25;266(5189):1376–1380. doi: 10.1126/science.7973727. [DOI] [PubMed] [Google Scholar]
  16. Smyrk T. C. Colon cancer connections. Cancer syndrome meets molecular biology meets histopathology. Am J Pathol. 1994 Jul;145(1):1–6. [PMC free article] [PubMed] [Google Scholar]
  17. Stratton M. R. The p53 gene in human cancer. Eur J Cancer. 1992;28(1):293–295. doi: 10.1016/0959-8049(92)90437-7. [DOI] [PubMed] [Google Scholar]
  18. Strickler J. G., Zheng J., Shu Q., Burgart L. J., Alberts S. R., Shibata D. p53 mutations and microsatellite instability in sporadic gastric cancer: when guardians fail. Cancer Res. 1994 Sep 1;54(17):4750–4755. [PubMed] [Google Scholar]
  19. Wu C., Akiyama Y., Imai K., Miyake S., Nagasaki H., Oto M., Okabe S., Iwama T., Mitamura K., Masumitsu H. DNA alterations in cells from hereditary non-polyposis colorectal cancer patients. Oncogene. 1994 Mar;9(3):991–994. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES