Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Feb;62(2):729–732. doi: 10.1128/iai.62.2.729-732.1994

Legionella pneumophila growth restriction and cytokine production by murine macrophages activated by a novel Pseudomonas lipid A.

S Arata 1, N Kasai 1, T W Klein 1, H Friedman 1
PMCID: PMC186168  PMID: 8300234

Abstract

Peritoneal exudate macrophages from A/J mice activated by purified lipid A preparations from Pseudomonas vesicularis, which contain 2,3-diamino-2,3-dideoxy-D-glucose disaccharide phosphomonoester as the lipid A backbone, restricted the growth of Legionella pneumophila, an intracellular opportunistic bacteria which readily grows in otherwise permissive macrophages from susceptible A/J mice and induced production of the proinflammatory cytokines interleukin 1 and tumor necrosis factor alpha. Activation of the macrophages was similar to that which occurred after stimulation with more conventional lipid A from other bacteria such as salmonellae. A purified fraction A3 preparation from the Pseudomonas lipid A, which lacked only 1 mol of amide-linked fatty acid, in comparison with another fraction (A2), which contained the fatty acid, also markedly activated the usually permissive macrophages from susceptible A/J mice to resist growth of the legionellae. The fraction A3 also induced both interleukin and tumor necrosis factor alpha. These results show that this novel lipid A from P. vesicularis can activate macrophages to resist infection with an opportunistic bacterium in a manner similar to that induced by conventional enterobacterial lipid A and that the hydrophobic portion of this Pseudomonas molecule may have an important role in activation of macrophages.

Full text

PDF
729

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arata S., Hirayama T., Akiyama Y., Mashimo J., Kasai N., Yoshida K., Nakamura Y., Aoki Y. Epitope analysis of lipid A preparations from Pseudomonas diminuta and Pseudomonas vesicularis. FEMS Microbiol Lett. 1989 Jul 15;51(1):223–225. doi: 10.1016/0378-1097(89)90513-2. [DOI] [PubMed] [Google Scholar]
  2. Arata S., Hirayama T., Kasai N., Itoh T., Ohsawa A. Isolation of 9-hydroxy-delta-tetradecalactone from lipid A of Pseudomonas diminuta and Pseudomonas vesicularis. FEMS Microbiol Lett. 1989 Jul 15;51(1):219–222. doi: 10.1016/0378-1097(89)90512-0. [DOI] [PubMed] [Google Scholar]
  3. Arata S., Nakaya K., Furuhashi H., Nakamura Y., Hirayama T., Mashimo J., Kasai N. Tumor necrosis factor-inducing activities of lipid A preparations from Pseudomonas diminuta and Pseudomonas vesicularis. Jpn J Cancer Res. 1988 May;79(5):626–631. doi: 10.1111/j.1349-7006.1988.tb00032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arata S., Newton C., Klein T. W., Yamamoto Y., Friedman H. Legionella pneumophila induced tumor necrosis factor production in permissive versus nonpermissive macrophages. Proc Soc Exp Biol Med. 1993 May;203(1):26–29. doi: 10.3181/00379727-203-43568. [DOI] [PubMed] [Google Scholar]
  5. Blanchard D. K., Friedman H., Klein T. W., Djeu J. Y. Induction of interferon-gamma and tumor necrosis factor by Legionella pneumophila: augmentation of human neutrophil bactericidal activity. J Leukoc Biol. 1989 Jun;45(6):538–545. doi: 10.1002/jlb.45.6.538. [DOI] [PubMed] [Google Scholar]
  6. Egawa K., Klein T. W., Yamamoto Y., Newton C. A., Friedman H. Enhanced growth restriction of Legionella pneumophila in endotoxin-treated macrophages. Proc Soc Exp Biol Med. 1992 Jul;200(3):338–342. doi: 10.3181/00379727-200-43439. [DOI] [PubMed] [Google Scholar]
  7. Galanos C., Lüderitz O. Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur J Biochem. 1975 Jun;54(2):603–610. doi: 10.1111/j.1432-1033.1975.tb04172.x. [DOI] [PubMed] [Google Scholar]
  8. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  9. Kasai N., Arata S., Mashimo J., Akiyama Y., Tanaka C., Egawa K., Tanaka S. Pseudomonas diminuta LPS with a new endotoxic lipid A structure. Biochem Biophys Res Commun. 1987 Feb 13;142(3):972–978. doi: 10.1016/0006-291x(87)91509-9. [DOI] [PubMed] [Google Scholar]
  10. Kasai N., Arata S., Mashimo J., Okuda K., Aihara Y., Kotani S., Takada H., Shiba T., Kusumoto S., Imoto M. Synthetic Salmonella-type lipid A antigen with high serological specificity. Infect Immun. 1986 Jan;51(1):43–48. doi: 10.1128/iai.51.1.43-48.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loppnow H., Brade L., Brade H., Rietschel E. T., Kusumoto S., Shiba T., Flad H. D. Induction of human interleukin 1 by bacterial and synthetic lipid A. Eur J Immunol. 1986 Oct;16(10):1263–1267. doi: 10.1002/eji.1830161013. [DOI] [PubMed] [Google Scholar]
  12. Loppnow H., Libby P., Freudenberg M., Krauss J. H., Weckesser J., Mayer H. Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun. 1990 Nov;58(11):3743–3750. doi: 10.1128/iai.58.11.3743-3750.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mashimo J., Tanaka C., Arata S., Akiyama Y., Hata S., Hirayama T., Egawa K., Kasai N. Structural heterogeneity regarding local Shwartzman activity of lipid A. Microbiol Immunol. 1988;32(7):653–666. doi: 10.1111/j.1348-0421.1988.tb01427.x. [DOI] [PubMed] [Google Scholar]
  14. Nakaya K., Deguchi Y., Arata S., Kasai N., Nakamura Y. Tumor necrosis factor changes sensitivity of differentiation of mouse leukemia M1 cells by lipopolysaccharide. Jpn J Cancer Res. 1990 Apr;81(4):396–402. doi: 10.1111/j.1349-7006.1990.tb02581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takahashi I., Kotani S., Takada H., Tsujimoto M., Ogawa T., Shiba T., Kusumoto S., Yamamoto M., Hasegawa A., Kiso M. Requirement of a properly acylated beta(1-6)-D-glucosamine disaccharide bisphosphate structure for efficient manifestation of full endotoxic and associated bioactivities of lipid A. Infect Immun. 1987 Jan;55(1):57–68. doi: 10.1128/iai.55.1.57-68.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weckesser J., Mayer H. Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev. 1988 Apr-Jun;4(2):143–153. doi: 10.1111/j.1574-6968.1988.tb02740.x. [DOI] [PubMed] [Google Scholar]
  17. Wilkinson S. G., Taylor D. P. Occurrence of 2,3-diamino-2,3-dideoxy-d-glucose in lipid A from lipopolysaccharide of pseudomonas diminuta. J Gen Microbiol. 1978 Dec;109(2):367–370. doi: 10.1099/00221287-109-2-367. [DOI] [PubMed] [Google Scholar]
  18. Yamamoto Y., Klein T. W., Newton C. A., Widen R., Friedman H. Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun. 1988 Feb;56(2):370–375. doi: 10.1128/iai.56.2.370-375.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES