Abstract
Because accelerated atherosclerosis is the main complication of diabetes, we devised a new animal model that combines these two diseases, and investigated their joint impact on the main plasma components and organs known to be most affected in each disorder. Male Golden Syrian hamsters were subjected to three experimental conditions: streptozotocin-induced diabetes (D), diet-induced hyperlipemia (H), and a combination of hyperlipemia and diabetes (HD). At time intervals ranging from 2 to 24 weeks, the animals were sacrificed, the appropriate plasma constituents were determined, and the ultrastructural modifications of relevant tissues such as the heart, cardiac valves, coronary arteries, aorta, retina, and kidney were examined. The HD hamsters were characterized by marked alternations of plasma components, ie, increase in circulating glucose, cholesterol and lipid peroxide levels, glycation of albumin, and the appearance of irreversibly glycated albumin (AGE-Alb). These humoral changes coexisted with micro- and macroangiopathic lesions characteristic to both diseases, ie, capillary narrowing, hyperplasia of endothelial basal lamina, proliferation of perivascular extracellular matrix (abnormalities reminiscent of type I diabetes), and concomitant intimal accumulation of modified lipoproteins and macrophage-derived foam cells in the aorta, coronaries, and cardiac valves, leading to accelerated formation of atherosclerotic plaques. These changes eventually appeared in the D hamsters also, but at a much slower rate, whereas the H group showed only modifications characteristic for atherosclerosis. Our findings indicate that, overall, 1) diabetes accelerated the early development and progression of atherosclerotic lesions leading to rapid calcification, and 2) hyperlipidemia associated with diabetes accelerated the rate of development of diabetes-induced microvascular disease. The hamster model may be useful to study the impact of various drugs on the diabetes-related vascular complications.
Full text
PDF

















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ar'Rajab A., Ahrén B. Long-term diabetogenic effect of streptozotocin in rats. Pancreas. 1993 Jan;8(1):50–57. doi: 10.1097/00006676-199301000-00011. [DOI] [PubMed] [Google Scholar]
- Beisswenger P. J., Moore L. L., Brinck-Johnsen T., Curphey T. J. Increased collagen-linked pentosidine levels and advanced glycosylation end products in early diabetic nephropathy. J Clin Invest. 1993 Jul;92(1):212–217. doi: 10.1172/JCI116552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop R. W. Structure of the hamster low density lipoprotein receptor gene. J Lipid Res. 1992 Apr;33(4):549–557. [PubMed] [Google Scholar]
- Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
- Bucala R., Makita Z., Vega G., Grundy S., Koschinsky T., Cerami A., Vlassara H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9441–9445. doi: 10.1073/pnas.91.20.9441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. P. Perspective: measurement of circulating glycated proteins to monitor intermediate-term changes in glycaemic control. Eur J Clin Chem Clin Biochem. 1992 Dec;30(12):851–859. [PubMed] [Google Scholar]
- Dobrian A., Simionescu M. Irreversibly glycated albumin alters the physico-chemical characteristics of low density lipoproteins of normal and diabetic subjects. Biochim Biophys Acta. 1995 Jan 25;1270(1):26–35. doi: 10.1016/0925-4439(94)00068-2. [DOI] [PubMed] [Google Scholar]
- Donahue R. P., Orchard T. J. Diabetes mellitus and macrovascular complications. An epidemiological perspective. Diabetes Care. 1992 Sep;15(9):1141–1155. doi: 10.2337/diacare.15.9.1141. [DOI] [PubMed] [Google Scholar]
- Filip D. A., Nistor A., Bulla A., Radu A., Lupu F., Simionescu M. Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia. Atherosclerosis. 1987 Oct;67(2-3):199–214. doi: 10.1016/0021-9150(87)90280-2. [DOI] [PubMed] [Google Scholar]
- Fogelman A. M., Shechter I., Seager J., Hokom M., Child J. S., Edwards P. A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2214–2218. doi: 10.1073/pnas.77.4.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getz G. S. Report on the workshop on diabetes and mechanisms of atherogenesis. September 17th and 18th, 1992, Bethesda, Maryland. Arterioscler Thromb. 1993 Mar;13(3):459–464. doi: 10.1161/01.atv.13.3.459. [DOI] [PubMed] [Google Scholar]
- Howard B. V. Lipoprotein metabolism in diabetes mellitus. J Lipid Res. 1987 Jun;28(6):613–628. [PubMed] [Google Scholar]
- Jacoby R. M., Nesto R. W. Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis. J Am Coll Cardiol. 1992 Sep;20(3):736–744. doi: 10.1016/0735-1097(92)90033-j. [DOI] [PubMed] [Google Scholar]
- Katayama M., Hirai S., Kato I., Titani K. Immunoenzymometric analysis for plasma von Willebrand factor degradation in diabetes mellitus using monoclonal antibodies recognizing protease-sensitive sites. Clin Biochem. 1994 Apr;27(2):123–131. doi: 10.1016/0009-9120(94)90022-1. [DOI] [PubMed] [Google Scholar]
- Kolbe M., Kaufman J. L., Friedman J., Dinerstein C., Mackenzie J. W., Boyd C. D. Changes in steady-state levels of mRNAs coding for type IV collagen, laminin and fibronectin following capillary basement membrane thickening in human adult onset diabetes. Connect Tissue Res. 1990;25(1):77–85. doi: 10.3109/03008209009009814. [DOI] [PubMed] [Google Scholar]
- Manduteanu I., Calb M., Lupu C., Simionescu N., Simionescu M. Increased adhesion of human diabetic platelets to cultured valvular endothelial cells. J Submicrosc Cytol Pathol. 1992 Oct;24(4):539–547. [PubMed] [Google Scholar]
- Mauer S. M., Steffes M. W., Ellis E. N., Sutherland D. E., Brown D. M., Goetz F. C. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984 Oct;74(4):1143–1155. doi: 10.1172/JCI111523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murtiashaw M. H., Young J. E., Strickland A. L., McFarland K. F., Thorpe S. R., Baynes J. W. Measurement of nonenzymatically glucosylated serum protein by an improved thiobarbituric acid assay. Clin Chim Acta. 1983 May 30;130(2):177–187. doi: 10.1016/0009-8981(83)90115-8. [DOI] [PubMed] [Google Scholar]
- Nathan D. M. Long-term complications of diabetes mellitus. N Engl J Med. 1993 Jun 10;328(23):1676–1685. doi: 10.1056/NEJM199306103282306. [DOI] [PubMed] [Google Scholar]
- Nistor A., Bulla A., Filip D. A., Radu A. The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis. 1987 Nov;68(1-2):159–173. doi: 10.1016/0021-9150(87)90106-7. [DOI] [PubMed] [Google Scholar]
- Povoski S. P., McCullough P. J., Zhou W., Bell R. H., Jr Induction of diabetes mellitus in Syrian golden hamsters using stored equilibrium solutions of streptozotocin. Lab Anim Sci. 1993 Aug;43(4):310–314. [PubMed] [Google Scholar]
- Raz I., Havivi Y., Yarom R. Reduced negative surface charge on arterial endothelium of diabetic rats. Diabetologia. 1988 Aug;31(8):618–620. doi: 10.1007/BF00264770. [DOI] [PubMed] [Google Scholar]
- Richardson M., Hadcock S. J., DeReske M., Cybulsky M. I. Increased expression in vivo of VCAM-1 and E-selectin by the aortic endothelium of normolipemic and hyperlipemic diabetic rabbits. Arterioscler Thromb. 1994 May;14(5):760–769. doi: 10.1161/01.atv.14.5.760. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
- Ruderman N. B., Williamson J. R., Brownlee M. Glucose and diabetic vascular disease. FASEB J. 1992 Aug;6(11):2905–2914. doi: 10.1096/fasebj.6.11.1644256. [DOI] [PubMed] [Google Scholar]
- Schwartz C. J., Valente A. J., Sprague E. A., Kelley J. L., Cayatte A. J., Rozek M. M. Pathogenesis of the atherosclerotic lesion. Implications for diabetes mellitus. Diabetes Care. 1992 Sep;15(9):1156–1167. doi: 10.2337/diacare.15.9.1156. [DOI] [PubMed] [Google Scholar]
- Sima A., Bulla A., Simionescu N. Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol. 1990 Jan;22(1):1–16. [PubMed] [Google Scholar]
- Simionescu N., Sima A., Dobrian A., Tirziu D., Simionescu M. Pathobiochemical changes of the arterial wall at the inception of atherosclerosis. Curr Top Pathol. 1993;87:1–45. doi: 10.1007/978-3-642-76849-1_1. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M. Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986 Apr;123(1):109–125. [PMC free article] [PubMed] [Google Scholar]
- Stary H. C. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J. 1990 Aug;11 (Suppl E):3–19. doi: 10.1093/eurheartj/11.suppl_e.3. [DOI] [PubMed] [Google Scholar]
- Sullivan M. P., Cerda J. J., Robbins F. L., Burgin C. W., Beatty R. J. The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab Anim Sci. 1993 Dec;43(6):575–578. [PubMed] [Google Scholar]
- Tîrziu D., Dobrian A., Tasca C., Simionescu M., Simionescu N. Intimal thickenings of human aorta contain modified reassembled lipoproteins. Atherosclerosis. 1995 Jan 6;112(1):101–114. doi: 10.1016/0021-9150(94)05405-8. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Rowold E., Hoffman P., Kilo C. Influence of fixation and morphometric technics on capillary basement-membrane thickening prevalence data in diabetes. Diabetes. 1976 Jul;25(7):604–613. doi: 10.2337/diab.25.7.604. [DOI] [PubMed] [Google Scholar]
- Wu J. T. Review of diabetes: identification of markers for early detection, glycemic control, and monitoring clinical complications. J Clin Lab Anal. 1993;7(5):293–300. doi: 10.1002/jcla.1860070510. [DOI] [PubMed] [Google Scholar]