Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Mar;62(3):915–921. doi: 10.1128/iai.62.3.915-921.1994

Biofilm formation by Candida species on the surface of catheter materials in vitro.

S P Hawser 1, L J Douglas 1
PMCID: PMC186203  PMID: 8112864

Abstract

A model system for studying Candida biofilms growing on the surface of small discs of catheter material is described. Biofilm formation was determined quantitatively by a colorimetric assay involving reduction of a tetrazolium salt or by [3H]leucine incorporation; both methods gave excellent correlation with biofilm dry weight (r = 0.997 and 0.945, respectively). Growth of Candida albicans biofilms in medium containing 500 mM galactose or 50 mM glucose reached a maximum after 48 h and then declined; however, the cell yield was lower in low-glucose medium. Comparison of biofilm formation by 15 different isolates of C. albicans failed to reveal any correlation with pathogenicity within this group, but there was some correlation with pathogenicity when different Candida species were tested. Isolates of C. parapsilosis (Glasgow), C. pseudotropicalis, and C. glabrata all gave significantly less biofilm growth (P < 0.001) than the more pathogenic C. albicans. Evaluation of various catheter materials showed that biofilm formation by C. albicans was slightly increased on latex or silicone elastomer (P < 0.05), compared with polyvinyl chloride, but substantially decreased on polyurethane or 100% silicone (P < 0.001). Scanning electron microscopy demonstrated that after 48 h, C. albicans biofilms consisted of a dense network of yeasts, germ tubes, pseudohyphae, and hyphae; extracellular polymeric material was visible on the surfaces of some of these morphological forms. Our model system is a simple and convenient method for studying Candida biofilms and could be used for testing the efficacy of antifungal agents against biofilm cells.

Full text

PDF
915

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. R., Gilbert P. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol. 1993;74 (Suppl):87S–97S. doi: 10.1111/j.1365-2672.1993.tb04345.x. [DOI] [PubMed] [Google Scholar]
  2. Calderone R. A., Braun P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev. 1991 Mar;55(1):1–20. doi: 10.1128/mr.55.1.1-20.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  4. Davies D. G., Chakrabarty A. M., Geesey G. G. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol. 1993 Apr;59(4):1181–1186. doi: 10.1128/aem.59.4.1181-1186.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dix B. A., Cohen P. S., Laux D. C., Cleeland R. Radiochemical method for evaluating the effect of antibiotics on Escherichia coli biofilms. Antimicrob Agents Chemother. 1988 May;32(5):770–772. doi: 10.1128/aac.32.5.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dougherty S. H. Pathobiology of infection in prosthetic devices. Rev Infect Dis. 1988 Nov-Dec;10(6):1102–1117. doi: 10.1093/clinids/10.6.1102. [DOI] [PubMed] [Google Scholar]
  7. Elliott T. S. Intravascular-device infections. J Med Microbiol. 1988 Nov;27(3):161–167. doi: 10.1099/00222615-27-3-161. [DOI] [PubMed] [Google Scholar]
  8. Gilbert P., Allison D. G., Evans D. J., Handley P. S., Brown M. R. Growth rate control of adherent bacterial populations. Appl Environ Microbiol. 1989 May;55(5):1308–1311. doi: 10.1128/aem.55.5.1308-1311.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldmann D. A., Pier G. B. Pathogenesis of infections related to intravascular catheterization. Clin Microbiol Rev. 1993 Apr;6(2):176–192. doi: 10.1128/cmr.6.2.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gristina A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987 Sep 25;237(4822):1588–1595. doi: 10.1126/science.3629258. [DOI] [PubMed] [Google Scholar]
  11. Levitz S. M., Diamond R. D. A rapid colorimetric assay of fungal viability with the tetrazolium salt MTT. J Infect Dis. 1985 Nov;152(5):938–945. doi: 10.1093/infdis/152.5.938. [DOI] [PubMed] [Google Scholar]
  12. McCourtie J., Douglas L. J. Extracellular polymer of Candida albicans: isolation, analysis and role in adhesion. J Gen Microbiol. 1985 Mar;131(3):495–503. doi: 10.1099/00221287-131-3-495. [DOI] [PubMed] [Google Scholar]
  13. McCourtie J., Douglas L. J. Relationship between cell surface composition of Candida albicans and adherence to acrylic after growth on different carbon sources. Infect Immun. 1981 Jun;32(3):1234–1241. doi: 10.1128/iai.32.3.1234-1241.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCoy W. F., Bryers J. D., Robbins J., Costerton J. W. Observations of fouling biofilm formation. Can J Microbiol. 1981 Sep;27(9):910–917. doi: 10.1139/m81-143. [DOI] [PubMed] [Google Scholar]
  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  16. Nichols W. W., Evans M. J., Slack M. P., Walmsley H. L. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol. 1989 May;135(5):1291–1303. doi: 10.1099/00221287-135-5-1291. [DOI] [PubMed] [Google Scholar]
  17. Pomés R., Gil C., Nombela C. Genetic analysis of Candida albicans morphological mutants. J Gen Microbiol. 1985 Aug;131(8):2107–2113. doi: 10.1099/00221287-131-8-2107. [DOI] [PubMed] [Google Scholar]
  18. Prosser B. L., Taylor D., Dix B. A., Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother. 1987 Oct;31(10):1502–1506. doi: 10.1128/aac.31.10.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rotrosen D., Gibson T. R., Edwards J. E., Jr Adherence of candida species to intravenous catheters. J Infect Dis. 1983 Mar;147(3):594–594. doi: 10.1093/infdis/147.3.594. [DOI] [PubMed] [Google Scholar]
  20. Sweet S. P., Douglas L. J. Effect of iron deprivation on surface composition and virulence determinants of Candida albicans. J Gen Microbiol. 1991 Apr;137(4):859–865. doi: 10.1099/00221287-137-4-859. [DOI] [PubMed] [Google Scholar]
  21. Weems J. J., Jr Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis. 1992 Mar;14(3):756–766. doi: 10.1093/clinids/14.3.756. [DOI] [PubMed] [Google Scholar]
  22. Wey S. B., Mori M., Pfaller M. A., Woolson R. F., Wenzel R. P. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med. 1988 Dec;148(12):2642–2645. doi: 10.1001/archinte.148.12.2642. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES