Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Apr;62(4):1185–1191. doi: 10.1128/iai.62.4.1185-1191.1994

Competition between rBPI23, a recombinant fragment of bactericidal/permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and gram-negative bacteria.

H Gazzano-Santoro 1, K Mészáros 1, C Birr 1, S F Carroll 1, G Theofan 1, A H Horwitz 1, E Lim 1, S Aberle 1, H Kasler 1, J B Parent 1
PMCID: PMC186254  PMID: 8132325

Abstract

Lipopolysaccharide (LPS)-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) are two structurally related lipid A-binding proteins with divergent functional activities. LBP mediates activation of macrophage and other proinflammatory cells. In contrast, BPI has potent bactericidal and LPS-neutralizing activities. A recombinant fragment of BPI (rBPI23) retains the potent biological activities of the holo protein and may represent a novel therapeutic agent for the treatment of gram-negative infections, sepsis, and endotoxemia. For therapeutic effectiveness in many clinical situations, rBPI23 will have to successfully compete with high serum levels of LBP for binding to endotoxin and gram-negative bacteria. The relative binding affinities of rBPI23 and human recombinant LBP (rLBP) for lipid A and gram-negative bacteria were evaluated. The binding of both proteins to lipid A was specific and saturable with apparent Kds of 2.6 nM for rBPI23 and 58 nM for rLBP. rBPI23 was approximately 75-fold more potent than rLBP in inhibiting the binding of 125I-rLBP to lipid A. The binding affinity of rBPI23 (Kd = 70 nM) for Escherichia coli J5 bacteria was also significantly higher than that of rLBP (Kd = 1,050 nM). In addition, rBPI23 at 0.2 micrograms/ml was able to inhibit LPS-induced tumor necrosis factor release from monocytes in the presence of 20 micrograms of rLBP per ml. These results demonstrate that rBPI23 binds more avidly to endotoxin than does rLBP and that, even in the presence of a 100-fold weight excess of rLBP, rBPI23 effectively blocks the proinflammatory response of peripheral blood mononuclear cells to endotoxin.

Full text

PDF
1185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammons W. S., Kung A. H. Recombinant amino terminal fragment of bactericidal/permeability-increasing protein prevents hemodynamic responses to endotoxin. Circ Shock. 1993 Nov;41(3):176–184. [PubMed] [Google Scholar]
  2. Bone R. C. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. doi: 10.7326/0003-4819-115-6-457. [DOI] [PubMed] [Google Scholar]
  3. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  4. Fishwild D. M., Saria E. A. Investigation and prevention of artifactual staining in flow cytometric analyses of whole blood samples from patients treated with H65-RTA, an anti-CD5 monoclonal antibody conjugated to ricin A chain. J Immunol Methods. 1991 Nov 5;144(1):27–34. doi: 10.1016/0022-1759(91)90226-6. [DOI] [PubMed] [Google Scholar]
  5. Gazzano-Santoro H., Parent J. B., Grinna L., Horwitz A., Parsons T., Theofan G., Elsbach P., Weiss J., Conlon P. J. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun. 1992 Nov;60(11):4754–4761. doi: 10.1128/iai.60.11.4754-4761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glauser M. P., Zanetti G., Baumgartner J. D., Cohen J. Septic shock: pathogenesis. Lancet. 1991 Sep 21;338(8769):732–736. doi: 10.1016/0140-6736(91)91452-z. [DOI] [PubMed] [Google Scholar]
  7. Heumann D., Gallay P., Betz-Corradin S., Barras C., Baumgartner J. D., Glauser M. P. Competition between bactericidal/permeability-increasing protein and lipopolysaccharide-binding protein for lipopolysaccharide binding to monocytes. J Infect Dis. 1993 Jun;167(6):1351–1357. doi: 10.1093/infdis/167.6.1351. [DOI] [PubMed] [Google Scholar]
  8. Kitchens R. L., Ulevitch R. J., Munford R. S. Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med. 1992 Aug 1;176(2):485–494. doi: 10.1084/jem.176.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kohn F. R., Ammons W. S., Horwitz A., Grinna L., Theofan G., Weickmann J., Kung A. H. Protective effect of a recombinant amino-terminal fragment of bactericidal/permeability-increasing protein in experimental endotoxemia. J Infect Dis. 1993 Nov;168(5):1307–1310. doi: 10.1093/infdis/168.5.1307. [DOI] [PubMed] [Google Scholar]
  10. Mannion B. A., Kalatzis E. S., Weiss J., Elsbach P. Preferential binding of the neutrophil cytoplasmic granule-derived bactericidal/permeability increasing protein to target bacteria. Implications and use as a means of purification. J Immunol. 1989 Apr 15;142(8):2807–2812. [PubMed] [Google Scholar]
  11. Marra M. N., Wilde C. G., Collins M. S., Snable J. L., Thornton M. B., Scott R. W. The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol. 1992 Jan 15;148(2):532–537. [PubMed] [Google Scholar]
  12. Marra M. N., Wilde C. G., Griffith J. E., Snable J. L., Scott R. W. Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity. J Immunol. 1990 Jan 15;144(2):662–666. [PubMed] [Google Scholar]
  13. Molina J. M., Scadden D. T., Byrn R., Dinarello C. A., Groopman J. E. Production of tumor necrosis factor alpha and interleukin 1 beta by monocytic cells infected with human immunodeficiency virus. J Clin Invest. 1989 Sep;84(3):733–737. doi: 10.1172/JCI114230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
  15. Mészáros K., Parent J. B., Gazzano-Santoro H., Little R., Horwitz A., Parsons T., Theofan G., Grinna L., Weickmann J., Elsbach P. A recombinant amino terminal fragment of bactericidal/permeability-increasing protein inhibits the induction of leukocyte responses by LPS. J Leukoc Biol. 1993 Dec;54(6):558–563. doi: 10.1002/jlb.54.6.558. [DOI] [PubMed] [Google Scholar]
  16. Ooi C. E., Weiss J., Doerfler M. E., Elsbach P. Endotoxin-neutralizing properties of the 25 kD N-terminal fragment and a newly isolated 30 kD C-terminal fragment of the 55-60 kD bactericidal/permeability-increasing protein of human neutrophils. J Exp Med. 1991 Sep 1;174(3):649–655. doi: 10.1084/jem.174.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ooi C. E., Weiss J., Elsbach P., Frangione B., Mannion B. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem. 1987 Nov 5;262(31):14891–14894. [PubMed] [Google Scholar]
  18. Parrillo J. E., Parker M. M., Natanson C., Suffredini A. F., Danner R. L., Cunnion R. E., Ognibene F. P. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med. 1990 Aug 1;113(3):227–242. doi: 10.7326/0003-4819-113-3-227. [DOI] [PubMed] [Google Scholar]
  19. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  20. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  21. Seydel U., Labischinski H., Kastowsky M., Brandenburg K. Phase behavior, supramolecular structure, and molecular conformation of lipopolysaccharide. Immunobiology. 1993 Apr;187(3-5):191–211. doi: 10.1016/S0171-2985(11)80339-6. [DOI] [PubMed] [Google Scholar]
  22. Spitznagel J. K. Antibiotic proteins of human neutrophils. J Clin Invest. 1990 Nov;86(5):1381–1386. doi: 10.1172/JCI114851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. The 17th Annual Conference on Shock. Big Sky, Montana, June 5-8, 1994. Abstracts. Shock. 1994;1 (Suppl):1–71. [PubMed] [Google Scholar]
  24. Tobias P. S., Mathison J. C., Ulevitch R. J. A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis. J Biol Chem. 1988 Sep 25;263(27):13479–13481. [PubMed] [Google Scholar]
  25. Tobias P. S., Soldau K., Ulevitch R. J. Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem. 1989 Jun 25;264(18):10867–10871. [PubMed] [Google Scholar]
  26. Tobias P. S., Soldau K., Ulevitch R. J. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med. 1986 Sep 1;164(3):777–793. doi: 10.1084/jem.164.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ulevitch R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–289. doi: 10.1016/s0065-2776(08)60502-7. [DOI] [PubMed] [Google Scholar]
  28. Weiss J., Beckerdite-Quagliata S., Elsbach P. Resistance of gram-negative bacteria to purified bactericidal leukocyte proteins: relation to binding and bacterial lipopolysaccharide structure. J Clin Invest. 1980 Mar;65(3):619–628. doi: 10.1172/JCI109707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss J., Elsbach P., Olsson I., Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978 Apr 25;253(8):2664–2672. [PubMed] [Google Scholar]
  30. Weiss J., Elsbach P., Shu C., Castillo J., Grinna L., Horwitz A., Theofan G. Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest. 1992 Sep;90(3):1122–1130. doi: 10.1172/JCI115930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weiss J., Hutzler M., Kao L. Environmental modulation of lipopolysaccharide chain length alters the sensitivity of Escherichia coli to the neutrophil bactericidal/permeability-increasing protein. Infect Immun. 1986 Feb;51(2):594–599. doi: 10.1128/iai.51.2.594-599.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weiss J., Muello K., Victor M., Elsbach P. The role of lipopolysaccharides in the action of the bactericidal/permeability-increasing neutrophil protein on the bacterial envelope. J Immunol. 1984 Jun;132(6):3109–3115. [PubMed] [Google Scholar]
  33. White M. L., Ma J. K., Birr C. A., Trown P. W., Carroll S. F. Measurement of bactericidal/permeability-increasing protein in human body fluids by sandwich ELISA. J Immunol Methods. 1994 Jan 3;167(1-2):227–235. doi: 10.1016/0022-1759(94)90091-4. [DOI] [PubMed] [Google Scholar]
  34. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES