Abstract
The relationship between chain length as well as the position of fatty acyl groups to the ability of lipid A to abolish the expression of suppressor T-cell (Ts) activity was examined. Fatty acyl chain lengths of C12 to C14, as in the lipid A of Escherichia coli and Salmonella minnesota, appear to be optimal for this bioactivity, since lipid A preparations with fatty acyl groups of relatively short chain length (C10 to C12 for Pseudomonas aeruginosa and Chromobacterium violaceum) or predominantly long chain length (C18 for Helicobacter pylori) are without effect. The presence of an acyloxyacyl group of appropriate chain length at the 3' position of the glucosamine disaccharide backbone of lipid A also plays a decisive role. By contrast, the lipid A proximal inner core region oligosaccharides of some bacterial lipopolysaccharides increase the expression of Ts activity; this is due mainly to the capacity of such oligosaccharides, which are relatively conserved in structure among gram-negative bacteria, to enlarge or expand upon the population of CD8+ Ts generated during the course of a normal antibody response to unrelated microbial antigens. The minimal structure required for the expression of the added immunosuppression observed appears to be a hexasaccharide containing one 2-keto-3-deoxyoctonate residue, two glucose residues, and three heptose residues to which are attached two pyrophosphorylethanolamine groups. The relevance of these findings to virulence and to the pathogenesis of gram-negative infections is discussed.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsbaugh D. F., Prescott B., Baker P. J. Effect of splenectomy on the expression of regulatory T cell activity. J Immunol. 1978 Oct;121(4):1483–1485. [PubMed] [Google Scholar]
- Baker P. H., Stashak P. W. Quantitative and qualitative studies on the primary antibody response to pneumococcal polysaccharides at ehe cellular level. J Immunol. 1969 Dec;103(6):1342–1348. [PubMed] [Google Scholar]
- Baker P. J., Amsbaugh D. F., Stashak P. W., Caldes G., Prescott B. Direct evidence for the involvement of T suppressor cells in the expression of low-dose paralysis to type III pneumococcal polysaccharide. J Immunol. 1982 Mar;128(3):1059–1062. [PubMed] [Google Scholar]
- Baker P. J. Effect of endotoxin on suppressor T cell function. Immunobiology. 1993 Apr;187(3-5):372–381. doi: 10.1016/S0171-2985(11)80351-7. [DOI] [PubMed] [Google Scholar]
- Baker P. J., Hraba T., Taylor C. E., Myers K. R., Takayama K., Qureshi N., Stuetz P., Kusumoto S., Hasegawa A. Structural features that influence the ability of lipid A and its analogs to abolish expression of suppressor T cell activity. Infect Immun. 1992 Jul;60(7):2694–2701. doi: 10.1128/iai.60.7.2694-2701.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. J. Regulation of magnitude of antibody response to bacterial polysaccharide antigens by thymus-derived lymphocytes. Infect Immun. 1990 Nov;58(11):3465–3468. doi: 10.1128/iai.58.11.3465-3468.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. I. Dose-response studies and the effect of prior immunization on the magnitude of the antibody response. Immunology. 1971 Apr;20(4):469–480. [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Amsbaugh D. F., Prescott B. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. II. Studies on the relative rate of antibody synthesis and release by antibody-producing cells. Immunology. 1971 Apr;20(4):481–492. [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Stashak P. W., Prescott B. Use of erythrocytes sensitized with purified pneumococcal polysaccharides for the assay of antibody and antibody-producing cells. Appl Microbiol. 1969 Mar;17(3):422–426. doi: 10.1128/am.17.3.422-426.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boman H. G., Monner D. A. Characterization of lipopolysaccharides from Escherichia coli K-12 mutants. J Bacteriol. 1975 Feb;121(2):455–464. doi: 10.1128/jb.121.2.455-464.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elkins K. L., Stashak P. W., Baker P. J. Mechanisms of specific immunological unresponsiveness to bacterial lipopolysaccharides. Infect Immun. 1987 Dec;55(12):3093–3102. doi: 10.1128/iai.55.12.3093-3102.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elkins K. L., Stashak P. W., Baker P. J. Prior exposure to subimmunogenic amounts of some bacterial lipopolysaccharides induces specific immunological unresponsiveness. Infect Immun. 1987 Dec;55(12):3085–3092. doi: 10.1128/iai.55.12.3085-3092.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esquivel F., Taylor C. E., Baker P. J. Differential sensitivity of CD8+ suppressor and cytotoxic T lymphocyte activity to bacterial monophosphoryl lipid A. Infect Immun. 1991 Sep;59(9):2994–2998. doi: 10.1128/iai.59.9.2994-2998.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freudenberg M. A., Galanos C. Bacterial lipopolysaccharides: structure, metabolism and mechanisms of action. Int Rev Immunol. 1990;6(4):207–221. doi: 10.3109/08830189009056632. [DOI] [PubMed] [Google Scholar]
- Friedman H., Butler R. C., Nowotny A. Enhanced antibody response in retrovirus-infected mice treated with endotoxin or nontoxic polysaccharide derivative. Proc Soc Exp Biol Med. 1987 Dec;186(3):275–279. doi: 10.3181/00379727-186-42613. [DOI] [PubMed] [Google Scholar]
- Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
- Gronowicz E., Coutinho A., Melchers F. A plaque assay for all cells secreting Ig of a given type or class. Eur J Immunol. 1976 Aug;6(8):588–590. doi: 10.1002/eji.1830060812. [DOI] [PubMed] [Google Scholar]
- Hasløv K., Fomsgaard A., Takayama K., Fomsgaard J. S., Ibsen P., Fauntleroy M. B., Stashak P. W., Taylor C. E., Baker P. J. Immunosuppressive effects induced by the polysaccharide moiety of some bacterial lipopolysaccharides. Immunobiology. 1992 Nov;186(5):378–393. doi: 10.1016/S0171-2985(11)80392-X. [DOI] [PubMed] [Google Scholar]
- Hiernaux J. R., Stashak P. W., Cantrell J. L., Rudbach J. A., Baker P. J. Immunomodulatory activity of monophosphoryl lipid A in C3H/HeJ and C3H/HeSnJ mice. Infect Immun. 1989 May;57(5):1483–1490. doi: 10.1128/iai.57.5.1483-1490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holst O., Brade H. Structural studies of the core region of the lipopolysaccharide from Salmonella minnesota strain R7 (rough mutant chemotype Rd1). Carbohydr Res. 1991 Oct 14;219:247–251. doi: 10.1016/0008-6215(91)89058-n. [DOI] [PubMed] [Google Scholar]
- Homma J. Y., Abe C., Yanagawa R., Noda H. Effectiveness of immunization with multicomponent vaccines in protection against hemorrhagic pneumonia due to Pseudomonas aeruginosa infection in mink. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S858–S866. doi: 10.1093/clinids/5.supplement_5.s858. [DOI] [PubMed] [Google Scholar]
- Ikeda S., Nishimura C., Matsuura M., Homma J. Y., Kiso M., Hasegawa A. Effect of acyl substituents of synthetic lipid A-subunit analogues on their immunomodulating antiviral activity. Antiviral Res. 1990 Jun;13(6):327–333. doi: 10.1016/0166-3542(90)90016-z. [DOI] [PubMed] [Google Scholar]
- Jansson P. E., Lindberg A. A., Lindberg B., Wollin R. Structural studies on the hexose region of the core in lipopolysaccharides from Enterobacteriaceae. Eur J Biochem. 1981 Apr;115(3):571–577. doi: 10.1111/j.1432-1033.1981.tb06241.x. [DOI] [PubMed] [Google Scholar]
- Jones J. M., Amsbaugh D. F., Stashak P. W., Prescott B., Baker P. J., Alling D. W. Kinetics of the antibody response to type III pneumococcal polysaccharide. I. Evidence that suppressor cells function by inhibiting the recruitment and proliferation of antibody-producing cells. J Immunol. 1976 Mar;116(3):647–656. [PubMed] [Google Scholar]
- Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal Biochem. 1978 Apr;85(2):595–601. doi: 10.1016/0003-2697(78)90260-9. [DOI] [PubMed] [Google Scholar]
- Kropinski A. M., Jewell B., Kuzio J., Milazzo F., Berry D. Structure and functions of Pseudomonas aeruginosa lipopolysaccharide. Antibiot Chemother (1971) 1985;36:58–73. doi: 10.1159/000410472. [DOI] [PubMed] [Google Scholar]
- Kulshin V. A., Zähringer U., Lindner B., Jäger K. E., Dmitriev B. A., Rietschel E. T. Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem. 1991 Jun 15;198(3):697–704. doi: 10.1111/j.1432-1033.1991.tb16069.x. [DOI] [PubMed] [Google Scholar]
- MacIntyre S., Lucken R., Owen P. Smooth lipopolysaccharide is the major protective antigen for mice in the surface extract from IATS serotype 6 contributing to the polyvalent Pseudomonas aeruginosa vaccine PEV. Infect Immun. 1986 Apr;52(1):76–84. doi: 10.1128/iai.52.1.76-84.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattsby-Baltzer I., Mielniczuk Z., Larsson L., Lindgren K., Goodwin S. Lipid A in Helicobacter pylori. Infect Immun. 1992 Oct;60(10):4383–4387. doi: 10.1128/iai.60.10.4383-4387.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller E., Apicella M. A. T-cell modulation of the murine antibody response to Neisseria meningitidis group A capsular polysaccharide. Infect Immun. 1988 Jan;56(1):259–266. doi: 10.1128/iai.56.1.259-266.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munford R. S. How do animal phagocytes process bacterial lipopolysaccharides? APMIS. 1991 Jun;99(6):487–491. doi: 10.1111/j.1699-0463.1991.tb05180.x. [DOI] [PubMed] [Google Scholar]
- Muotiala A., Helander I. M., Pyhälä L., Kosunen T. U., Moran A. P. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect Immun. 1992 Apr;60(4):1714–1716. doi: 10.1128/iai.60.4.1714-1716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakatsuka M., Kumazawa Y., Matsuura M., Homma J. Y., Kiso M., Hasegawa A. Enhancement of nonspecific resistance to bacterial infections and tumor regressions by treatment with synthetic lipid A-subunit analogs. Critical role of N- and 3-O-linked acyl groups in 4-O-phosphono-D-glucosamine derivatives. Int J Immunopharmacol. 1989;11(4):349–358. doi: 10.1016/0192-0561(89)90080-5. [DOI] [PubMed] [Google Scholar]
- OSBORN M. J. STUDIES ON THE GRAM-NEGATIVE CELL WALL. I. EVIDENCE FOR THE ROLE OF 2-KETO- 3-DEOXYOCTONATE IN THE LIPOPOLYSACCHARIDE OF SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1963 Sep;50:499–506. doi: 10.1073/pnas.50.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennington J. E., Pier G. B. Efficacy of cell wall Pseudomonas aeruginosa vaccines for protection against experimental pneumonia. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S852–S857. doi: 10.1093/clinids/5.supplement_5.s852. [DOI] [PubMed] [Google Scholar]
- Powderly W. G., Pier G. B., Markham R. B. In vitro T cell-mediated killing of Pseudomonas aeruginosa. IV. Nonresponsiveness in polysaccharide-immunized BALB/c mice is attributable to vinblastine-sensitive suppressor T cells. J Immunol. 1986 Sep 15;137(6):2025–2030. [PubMed] [Google Scholar]
- Prehm P., Stirm S., Jann B., Jann K. Cell-wall lipopolysaccharide from Escherichia coli B. Eur J Biochem. 1975 Aug 1;56(1):41–55. doi: 10.1111/j.1432-1033.1975.tb02205.x. [DOI] [PubMed] [Google Scholar]
- Qureshi N., Mascagni P., Ribi E., Takayama K. Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J Biol Chem. 1985 May 10;260(9):5271–5278. [PubMed] [Google Scholar]
- Qureshi N., Takayama K., Heller D., Fenselau C. Position of ester groups in the lipid A backbone of lipopolysaccharides obtained from Salmonella typhimurium. J Biol Chem. 1983 Nov 10;258(21):12947–12951. [PubMed] [Google Scholar]
- Ribi E. Beneficial modification of the endotoxin molecule. J Biol Response Mod. 1984;3(1):1–9. [PubMed] [Google Scholar]
- Rowe P. S., Meadow P. M. Structure of the Core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PAC1R and its defective mutants. Eur J Biochem. 1983 May 2;132(2):329–337. doi: 10.1111/j.1432-1033.1983.tb07366.x. [DOI] [PubMed] [Google Scholar]
- Sundstrom J. B., Cherniak R. T-cell-dependent and T-cell-independent mechanisms of tolerance to glucuronoxylomannan of Cryptococcus neoformans serotype A. Infect Immun. 1993 Apr;61(4):1340–1345. doi: 10.1128/iai.61.4.1340-1345.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takada H., Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. Crit Rev Microbiol. 1989;16(6):477–523. doi: 10.3109/10408418909104475. [DOI] [PubMed] [Google Scholar]
- Takayama K., Qureshi N., Mascagni P., Nashed M. A., Anderson L., Raetz C. R. Fatty acyl derivatives of glucosamine 1-phosphate in Escherichia coli and their relation to lipid A. Complete structure of A diacyl GlcN-1-P found in a phosphatidylglycerol-deficient mutant. J Biol Chem. 1983 Jun 25;258(12):7379–7385. [PubMed] [Google Scholar]
- Taylor C. E., Amsbaugh D. F., Stashak P. W., Caldes G., Prescott B., Baker P. J. Cell surface antigens and other characteristics of T cells regulating the antibody response to type III pneumococcal polysaccharide. J Immunol. 1983 Jan;130(1):19–23. [PubMed] [Google Scholar]
- Taylor C. E., Bright R. T-cell modulation of the antibody response to bacterial polysaccharide antigens. Infect Immun. 1989 Jan;57(1):180–185. doi: 10.1128/iai.57.1.180-185.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. E., Fauntleroy M. B., Stashak P. W., Baker P. J. Antigen-specific suppressor T cells respond to recombinant interleukin-2 and other lymphokines. Infect Immun. 1991 Feb;59(2):575–579. doi: 10.1128/iai.59.2.575-579.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. E., Stashak P. W., Caldes G., Prescott B., Chused T. E., Brooks A., Baker P. J. Activation of antigen-specific suppressor T cells by B cells from mice immunized with type III pneumococcal polysaccharide. J Exp Med. 1983 Sep 1;158(3):703–717. doi: 10.1084/jem.158.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wollenweber H. W., Seydel U., Lindner B., Lüderitz O., Rietschel E. T. Nature and location of amide-bound (R)-3-acyloxyacyl groups in lipid A of lipopolysaccharides from various gram-negative bacteria. Eur J Biochem. 1984 Dec 3;145(2):265–272. doi: 10.1111/j.1432-1033.1984.tb08547.x. [DOI] [PubMed] [Google Scholar]