Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Sep;149(3):903–910.

Role of calmodulin in HIV-potentiated Fas-mediated apoptosis.

Z Pan 1, W Radding 1, T Zhou 1, E Hunter 1, J Mountz 1, J M McDonald 1
PMCID: PMC1865159  PMID: 8780394

Abstract

The recently demonstrated extraordinary rate of turnover of T cells in human immunodeficiency virus (HIV)-1-infected patients and the apparently concomitant high rate of viral production and death are consistent with a large amount of cell death directly due to infection. Apoptosis may be one of the major forms of T cell death in HIV-1 infection. Many apoptotic pathways depend on calcium and therefore would be expected to involve calmodulin. As the HIV-1 envelope glycoprotein, gp160, contains two known calmodulin-binding domains, we investigated the possibility that the cytoplasmic domain of the HIV-1 envelope protein gp160 could enhance Fas-mediated apoptosis, the major form of apoptosis in lymphocytes. Our studies have shown that 1) transfection of H9 and MOLT-4 cells with a non-infectious HIV proviral clone, pFN, which expresses wild-type gp160, leads to enhanced Fas-mediated apoptosis, 2) transfection of MOLT-4 cells with a pFN construct pFN delta 147, which expresses a carboxyl-terminally truncated gp160 lacking the calmodulin-binding domains, produces less Fas-mediated apoptosis than transfection with pFN, and 3) the calmodulin antagonists trifluoperazine and tamoxifen completely inhibit the pFN enhancement of Fas-mediated apoptosis in MOLT-4 cells. We have replicated all of these results using the vectors pSRHS and pSRHS delta 147, which express wild-type gp160 and truncated gp160, respectively, in the absence of other viral proteins. These investigations provide a mechanism by which HIV-1 may induce apoptosis and a possible intracellular target for future therapeutics.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boudreau N., Sympson C. J., Werb Z., Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995 Feb 10;267(5199):891–893. doi: 10.1126/science.7531366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunner T., Mogil R. J., LaFace D., Yoo N. J., Mahboubi A., Echeverri F., Martin S. J., Force W. R., Lynch D. H., Ware C. F. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 1995 Feb 2;373(6513):441–444. doi: 10.1038/373441a0. [DOI] [PubMed] [Google Scholar]
  3. Cifone M. G., De Maria R., Roncaioli P., Rippo M. R., Azuma M., Lanier L. L., Santoni A., Testi R. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med. 1994 Oct 1;180(4):1547–1552. doi: 10.1084/jem.180.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleveland J. L., Ihle J. N. Contenders in FasL/TNF death signaling. Cell. 1995 May 19;81(4):479–482. doi: 10.1016/0092-8674(95)90068-3. [DOI] [PubMed] [Google Scholar]
  5. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  6. Dhein J., Walczak H., Bäumler C., Debatin K. M., Krammer P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) Nature. 1995 Feb 2;373(6513):438–441. doi: 10.1038/373438a0. [DOI] [PubMed] [Google Scholar]
  7. Dowd D. R., MacDonald P. N., Komm B. S., Haussler M. R., Miesfeld R. Evidence for early induction of calmodulin gene expression in lymphocytes undergoing glucocorticoid-mediated apoptosis. J Biol Chem. 1991 Oct 5;266(28):18423–18426. [PubMed] [Google Scholar]
  8. Dubay J. W., Roberts S. J., Hahn B. H., Hunter E. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity. J Virol. 1992 Nov;66(11):6616–6625. doi: 10.1128/jvi.66.11.6616-6625.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eischen C. M., Dick C. J., Leibson P. J. Tyrosine kinase activation provides an early and requisite signal for Fas-induced apoptosis. J Immunol. 1994 Sep 1;153(5):1947–1954. [PubMed] [Google Scholar]
  10. Estaquier J., Idziorek T., de Bels F., Barré-Sinoussi F., Hurtrel B., Aubertin A. M., Venet A., Mehtali M., Muchmore E., Michel P. Programmed cell death and AIDS: significance of T-cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9431–9435. doi: 10.1073/pnas.91.20.9431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gougeon M. L., Montagnier L. Apoptosis in AIDS. Science. 1993 May 28;260(5112):1269–1270. doi: 10.1126/science.8098552. [DOI] [PubMed] [Google Scholar]
  13. Hanabuchi S., Koyanagi M., Kawasaki A., Shinohara N., Matsuzawa A., Nishimura Y., Kobayashi Y., Yonehara S., Yagita H., Okumura K. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4930–4934. doi: 10.1073/pnas.91.11.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  15. Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991 Jul 26;66(2):233–243. doi: 10.1016/0092-8674(91)90614-5. [DOI] [PubMed] [Google Scholar]
  16. Ju S. T., Panka D. J., Cui H., Ettinger R., el-Khatib M., Sherr D. H., Stanger B. Z., Marshak-Rothstein A. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 1995 Feb 2;373(6513):444–448. doi: 10.1038/373444a0. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi N., Hamamoto Y., Yamamoto N., Ishii A., Yonehara M., Yonehara S. Anti-Fas monoclonal antibody is cytocidal to human immunodeficiency virus-infected cells without augmenting viral replication. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9620–9624. doi: 10.1073/pnas.87.24.9620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lam H. Y. Tamoxifen is a calmodulin antagonist in the activation of cAMP phosphodiesterase. Biochem Biophys Res Commun. 1984 Jan 13;118(1):27–32. doi: 10.1016/0006-291x(84)91062-3. [DOI] [PubMed] [Google Scholar]
  19. Lim K., Chae C. B. A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. Biotechniques. 1989 Jun;7(6):576–579. [PubMed] [Google Scholar]
  20. Matsubara K., Kubota M., Adachi S., Kuwakado K., Hirota H., Wakazono Y., Akiyama Y., Mikawa H. Different mode of cell death induced by calcium ionophore in human leukemia cell lines: possible role of constitutive endonuclease. Exp Cell Res. 1994 Jan;210(1):19–25. doi: 10.1006/excr.1994.1003. [DOI] [PubMed] [Google Scholar]
  21. McCaffrey P. G., Luo C., Kerppola T. K., Jain J., Badalian T. M., Ho A. M., Burgeon E., Lane W. S., Lambert J. N., Curran T. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science. 1993 Oct 29;262(5134):750–754. doi: 10.1126/science.8235597. [DOI] [PubMed] [Google Scholar]
  22. McConkey D. J., Jondal M., Orrenius S. Cellular signaling in thymocyte apoptosis. Semin Immunol. 1992 Dec;4(6):371–377. [PubMed] [Google Scholar]
  23. Meyaard L., Otto S. A., Jonker R. R., Mijnster M. J., Keet R. P., Miedema F. Programmed death of T cells in HIV-1 infection. Science. 1992 Jul 10;257(5067):217–219. doi: 10.1126/science.1352911. [DOI] [PubMed] [Google Scholar]
  24. Meyaard L., Otto S. A., Keet I. P., Roos M. T., Miedema F. Programmed death of T cells in human immunodeficiency virus infection. No correlation with progression to disease. J Clin Invest. 1994 Mar;93(3):982–988. doi: 10.1172/JCI117105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakajima H., Golstein P., Henkart P. A. The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity. J Exp Med. 1995 May 1;181(5):1905–1909. doi: 10.1084/jem.181.5.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Owen-Schaub L. B., Yonehara S., Crump W. L., 3rd, Grimm E. A. DNA fragmentation and cell death is selectively triggered in activated human lymphocytes by Fas antigen engagement. Cell Immunol. 1992 Mar;140(1):197–205. doi: 10.1016/0008-8749(92)90187-t. [DOI] [PubMed] [Google Scholar]
  27. Oyaizu N., McCloskey T. W., Than S., Hu R., Kalyanaraman V. S., Pahwa S. Cross-linking of CD4 molecules upregulates Fas antigen expression in lymphocytes by inducing interferon-gamma and tumor necrosis factor-alpha secretion. Blood. 1994 Oct 15;84(8):2622–2631. [PubMed] [Google Scholar]
  28. Radding W., Pan Z. Q., Hunter E., Johnston P., Williams J. P., McDonald J. M. Expression of HIV-1 envelope glycoprotein alters cellular calmodulin. Biochem Biophys Res Commun. 1996 Jan 5;218(1):192–197. doi: 10.1006/bbrc.1996.0034. [DOI] [PubMed] [Google Scholar]
  29. Sato T., Irie S., Kitada S., Reed J. C. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science. 1995 Apr 21;268(5209):411–415. doi: 10.1126/science.7536343. [DOI] [PubMed] [Google Scholar]
  30. Schwartzman R. A., Cidlowski J. A. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev. 1993 Apr;14(2):133–151. doi: 10.1210/edrv-14-2-133. [DOI] [PubMed] [Google Scholar]
  31. Srinivas S. K., Srinivas R. V., Anantharamaiah G. M., Compans R. W., Segrest J. P. Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins. J Biol Chem. 1993 Oct 25;268(30):22895–22899. [PubMed] [Google Scholar]
  32. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  33. White K., Grether M. E., Abrams J. M., Young L., Farrell K., Steller H. Genetic control of programmed cell death in Drosophila. Science. 1994 Apr 29;264(5159):677–683. doi: 10.1126/science.8171319. [DOI] [PubMed] [Google Scholar]
  34. Wyllie A. H., Morris R. G., Smith A. L., Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984 Jan;142(1):67–77. doi: 10.1002/path.1711420112. [DOI] [PubMed] [Google Scholar]
  35. Yonehara S., Ishii A., Yonehara M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med. 1989 May 1;169(5):1747–1756. doi: 10.1084/jem.169.5.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES