Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Oct;149(4):1129–1137.

Exon-specific DNA hypomethylation of the p53 gene of rat colon induced by dimethylhydrazine. Modulation by dietary folate.

Y I Kim 1, I P Pogribny 1, R N Salomon 1, S W Choi 1, D E Smith 1, S J James 1, J B Mason 1
PMCID: PMC1865189  PMID: 8863662

Abstract

Folate deficiency enhances colorectal carcinogenesis in dimethylhydrazine-treated rats. Folate is an important mediator of DNA methylation, an epigenetic modification of DNA that is known to be dysregulated in the early stages of colorectal cancer. This study investigated the effect of dimethylhydrazine on DNA methylation of the colonic p53 gene and the modulation of this effect by dietary folate. Sprague-Dawley rats were fed diets containing 0, 2, 8, or 40 mg of folate/kg of diet. Five weeks after diet initiation, dimethylhydrazine was injected weekly for fifteen weeks. Folate-depleted and folate-replete control animals did not receive dimethylhydrazine and were fed the 0- and 8-mg folate diets, respectively. The extent of p53 methylation was determined by a quantitative HpaII-polymerase chain reaction. In exons 6 and 7, significant p53 hypomethylation was observed in all dimethylhydrazine-treated rats relative to controls (P < 0.01), independent of dietary folate. In exon 8, significant p53 hypomethylation was observed only in the dimethylhydrazine-treated folate-depleted rats compared with controls (P = 0.038) and was effectively overcome by increasing levels of dietary folate (P = 0.008). In this model, dimethylhydrazine induces exon-specific p53 hypomethylation. In some exons, this occurs independent of dietary folate, and in others, increasing levels of dietary folate effectively override the induction of hypomethylation in a dose-responsive manner. This may be a mechanism by which increasing levels of dietary folate inhibit colorectal carcinogenesis.

Full text

PDF
1129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adany R., Heimer R., Caterson B., Sorrell J. M., Iozzo R. V. Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. J Biol Chem. 1990 Jul 5;265(19):11389–11396. [PubMed] [Google Scholar]
  2. Adany R., Iozzo R. V. Hypomethylation of the decorin proteoglycan gene in human colon cancer. Biochem J. 1991 Jun 1;276(Pt 2):301–306. doi: 10.1042/bj2760301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antequera F., Boyes J., Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 1990 Aug 10;62(3):503–514. doi: 10.1016/0092-8674(90)90015-7. [DOI] [PubMed] [Google Scholar]
  4. Antequera F., Macleod D., Bird A. P. Specific protection of methylated CpGs in mammalian nuclei. Cell. 1989 Aug 11;58(3):509–517. doi: 10.1016/0092-8674(89)90431-5. [DOI] [PubMed] [Google Scholar]
  5. Balaghi M., Wagner C. DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1184–1190. doi: 10.1006/bbrc.1993.1750. [DOI] [PubMed] [Google Scholar]
  6. Benito E., Cabeza E., Moreno V., Obrador A., Bosch F. X. Diet and colorectal adenomas: a case-control study in Majorca. Int J Cancer. 1993 Sep 9;55(2):213–219. doi: 10.1002/ijc.2910550208. [DOI] [PubMed] [Google Scholar]
  7. Benito E., Stiggelbout A., Bosch F. X., Obrador A., Kaldor J., Mulet M., Muñoz N. Nutritional factors in colorectal cancer risk: a case-control study in Majorca. Int J Cancer. 1991 Sep 9;49(2):161–167. doi: 10.1002/ijc.2910490202. [DOI] [PubMed] [Google Scholar]
  8. Bird C. L., Swendseid M. E., Witte J. S., Shikany J. M., Hunt I. F., Frankl H. D., Lee E. R., Longnecker M. P., Haile R. W. Red cell and plasma folate, folate consumption, and the risk of colorectal adenomatous polyps. Cancer Epidemiol Biomarkers Prev. 1995 Oct-Nov;4(7):709–714. [PubMed] [Google Scholar]
  9. Boehm T. L., Drahovsky D. Hypomethylation of DNA in Raji cells after treatment with N-methyl-N-nitrosourea. Carcinogenesis. 1981;2(1):39–42. doi: 10.1093/carcin/2.1.39. [DOI] [PubMed] [Google Scholar]
  10. Bolden A., Ward C., Siedlecki J. A., Weissbach A. DNA methylation. Inhibition of de novo and maintenance methylation in vitro by RNA and synthetic polynucleotides. J Biol Chem. 1984 Oct 25;259(20):12437–12443. [PubMed] [Google Scholar]
  11. Cheah M. S., Wallace C. D., Hoffman R. M. Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer Inst. 1984 Nov;73(5):1057–1065. [PubMed] [Google Scholar]
  12. Cox R. DNA methylase inhibition in vitro by N-methyl-N'-nitro-N-nitrosoguanidine. Cancer Res. 1980 Jan;40(1):61–63. [PubMed] [Google Scholar]
  13. Cravo M. L., Mason J. B., Dayal Y., Hutchinson M., Smith D., Selhub J., Rosenberg I. H. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res. 1992 Sep 15;52(18):5002–5006. [PubMed] [Google Scholar]
  14. Cravo M., Fidalgo P., Pereira A. D., Gouveia-Oliveira A., Chaves P., Selhub J., Mason J. B., Mira F. C., Leitao C. N. DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. Eur J Cancer Prev. 1994 Nov;3(6):473–479. doi: 10.1097/00008469-199411000-00004. [DOI] [PubMed] [Google Scholar]
  15. Fearon E. R., Jones P. A. Progressing toward a molecular description of colorectal cancer development. FASEB J. 1992 Jul;6(10):2783–2790. doi: 10.1096/fasebj.6.10.1321771. [DOI] [PubMed] [Google Scholar]
  16. Feinberg A. P., Gehrke C. W., Kuo K. C., Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 1988 Mar 1;48(5):1159–1161. [PubMed] [Google Scholar]
  17. Feinberg A. P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983 Jan 6;301(5895):89–92. doi: 10.1038/301089a0. [DOI] [PubMed] [Google Scholar]
  18. Feinberg A. P., Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun. 1983 Feb 28;111(1):47–54. doi: 10.1016/s0006-291x(83)80115-6. [DOI] [PubMed] [Google Scholar]
  19. Ferraroni M., La Vecchia C., D'Avanzo B., Negri E., Franceschi S., Decarli A. Selected micronutrient intake and the risk of colorectal cancer. Br J Cancer. 1994 Dec;70(6):1150–1155. doi: 10.1038/bjc.1994.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Filipe M. I. Mucous secretion in rat colonic mucosa during carcinogenesis induced by dimethylhydrazine. A morphological and histochemical study. Br J Cancer. 1975 Jul;32(1):60–77. doi: 10.1038/bjc.1975.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Freudenheim J. L., Graham S., Marshall J. R., Haughey B. P., Cholewinski S., Wilkinson G. Folate intake and carcinogenesis of the colon and rectum. Int J Epidemiol. 1991 Jun;20(2):368–374. doi: 10.1093/ije/20.2.368. [DOI] [PubMed] [Google Scholar]
  22. Giovannucci E., Rimm E. B., Ascherio A., Stampfer M. J., Colditz G. A., Willett W. C. Alcohol, low-methionine--low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst. 1995 Feb 15;87(4):265–273. doi: 10.1093/jnci/87.4.265. [DOI] [PubMed] [Google Scholar]
  23. Giovannucci E., Stampfer M. J., Colditz G. A., Rimm E. B., Trichopoulos D., Rosner B. A., Speizer F. E., Willett W. C. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst. 1993 Jun 2;85(11):875–884. doi: 10.1093/jnci/85.11.875. [DOI] [PubMed] [Google Scholar]
  24. Goelz S. E., Vogelstein B., Hamilton S. R., Feinberg A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985 Apr 12;228(4696):187–190. doi: 10.1126/science.2579435. [DOI] [PubMed] [Google Scholar]
  25. Hepburn P. A., Margison G. P., Tisdale M. J. Enzymatic methylation of cytosine in DNA is prevented by adjacent O6-methylguanine residues. J Biol Chem. 1991 May 5;266(13):7985–7987. [PubMed] [Google Scholar]
  26. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  27. Hulla J. E., Schneider R. P. Structure of the rat p53 tumor suppressor gene. Nucleic Acids Res. 1993 Feb 11;21(3):713–717. doi: 10.1093/nar/21.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones P. A., Rideout W. M., 3rd, Shen J. C., Spruck C. H., Tsai Y. C. Methylation, mutation and cancer. Bioessays. 1992 Jan;14(1):33–36. doi: 10.1002/bies.950140107. [DOI] [PubMed] [Google Scholar]
  29. Keshet I., Lieman-Hurwitz J., Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986 Feb 28;44(4):535–543. doi: 10.1016/0092-8674(86)90263-1. [DOI] [PubMed] [Google Scholar]
  30. Kim Y. I., Christman J. K., Fleet J. C., Cravo M. L., Salomon R. N., Smith D., Ordovas J., Selhub J., Mason J. B. Moderate folate deficiency does not cause global hypomethylation of hepatic and colonic DNA or c-myc-specific hypomethylation of colonic DNA in rats. Am J Clin Nutr. 1995 May;61(5):1083–1090. doi: 10.1093/ajcn/61.4.1083. [DOI] [PubMed] [Google Scholar]
  31. Kim Y. I., Giuliano A., Hatch K. D., Schneider A., Nour M. A., Dallal G. E., Selhub J., Mason J. B. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer. 1994 Aug 1;74(3):893–899. doi: 10.1002/1097-0142(19940801)74:3<893::aid-cncr2820740316>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  32. Kim Y., Mason J. B. Folate, epithelial dysplasia and colon cancer. Proc Assoc Am Physicians. 1995 Jul;107(2):218–227. [PubMed] [Google Scholar]
  33. Laird P. W., Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3(Spec No):1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. [DOI] [PubMed] [Google Scholar]
  34. Lashner B. A., Heidenreich P. A., Su G. L., Kane S. V., Hanauer S. B. Effect of folate supplementation on the incidence of dysplasia and cancer in chronic ulcerative colitis. A case-control study. Gastroenterology. 1989 Aug;97(2):255–259. doi: 10.1016/0016-5085(89)90058-9. [DOI] [PubMed] [Google Scholar]
  35. Lashner B. A. Red blood cell folate is associated with the development of dysplasia and cancer in ulcerative colitis. J Cancer Res Clin Oncol. 1993;119(9):549–554. doi: 10.1007/BF01686465. [DOI] [PubMed] [Google Scholar]
  36. Martin M. S., Martin F., Michiels R., Bastien H., Justrabo E., Bordes M., Viry B. An experimental model for cancer of the colon and rectum. Intestinal carcinoma induced in the rat 1,2-dimethylhydrazine. Digestion. 1973;8(1):22–34. doi: 10.1159/000197298. [DOI] [PubMed] [Google Scholar]
  37. Meyer F., White E. Alcohol and nutrients in relation to colon cancer in middle-aged adults. Am J Epidemiol. 1993 Aug 15;138(4):225–236. doi: 10.1093/oxfordjournals.aje.a116851. [DOI] [PubMed] [Google Scholar]
  38. Nelson M., McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2045–2071. doi: 10.1093/nar/19.suppl.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Paspatis G. A., Kalafatis E., Oros L., Xourgias V., Koutsioumpa P., Karamanolis D. G. Folate status and adenomatous colonic polyps. A colonoscopically controlled study. Dis Colon Rectum. 1995 Jan;38(1):64–68. doi: 10.1007/BF02053860. [DOI] [PubMed] [Google Scholar]
  40. Pogribny I. P., Basnakian A. G., Miller B. J., Lopatina N. G., Poirier L. A., James S. J. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res. 1995 May 1;55(9):1894–1901. [PubMed] [Google Scholar]
  41. Razin A., Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991 Sep;55(3):451–458. doi: 10.1128/mr.55.3.451-458.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Razin A., Szyf M. DNA methylation patterns. Formation and function. Biochim Biophys Acta. 1984 Sep 10;782(4):331–342. doi: 10.1016/0167-4781(84)90043-5. [DOI] [PubMed] [Google Scholar]
  43. Reeves P. G., Nielsen F. H., Fahey G. C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993 Nov;123(11):1939–1951. doi: 10.1093/jn/123.11.1939. [DOI] [PubMed] [Google Scholar]
  44. Riddell R. H., Goldman H., Ransohoff D. F., Appelman H. D., Fenoglio C. M., Haggitt R. C., Ahren C., Correa P., Hamilton S. R., Morson B. C. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum Pathol. 1983 Nov;14(11):931–968. doi: 10.1016/s0046-8177(83)80175-0. [DOI] [PubMed] [Google Scholar]
  45. Rideout W. M., 3rd, Coetzee G. A., Olumi A. F., Jones P. A. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990 Sep 14;249(4974):1288–1290. doi: 10.1126/science.1697983. [DOI] [PubMed] [Google Scholar]
  46. Rogers A. E., Nauss K. M. Rodent models for carcinoma of the colon. Dig Dis Sci. 1985 Dec;30(12 Suppl):87S–102S. doi: 10.1007/BF01296986. [DOI] [PubMed] [Google Scholar]
  47. Rogers K. J., Pegg A. E. Formation of O6-methylguanine by alkylation of rat liver, colon, and kidney DNA following administration of 1,2-dimethylhydrazine. Cancer Res. 1977 Nov;37(11):4082–4087. [PubMed] [Google Scholar]
  48. Selhub J., Miller J. W. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr. 1992 Jan;55(1):131–138. doi: 10.1093/ajcn/55.1.131. [DOI] [PubMed] [Google Scholar]
  49. Sharrard R. M., Royds J. A., Rogers S., Shorthouse A. J. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer. 1992 May;65(5):667–672. doi: 10.1038/bjc.1992.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Singer-Sam J., Grant M., LeBon J. M., Okuyama K., Chapman V., Monk M., Riggs A. D. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol Cell Biol. 1990 Sep;10(9):4987–4989. doi: 10.1128/mcb.10.9.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Singer-Sam J., LeBon J. M., Tanguay R. L., Riggs A. D. A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res. 1990 Feb 11;18(3):687–687. doi: 10.1093/nar/18.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Walzem R. L., Clifford A. J. Folate deficiency in rats fed diets containing free amino acids or intact proteins. J Nutr. 1988 Sep;118(9):1089–1096. doi: 10.1093/jn/118.9.1089. [DOI] [PubMed] [Google Scholar]
  53. Weitzman S. A., Turk P. W., Milkowski D. H., Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1261–1264. doi: 10.1073/pnas.91.4.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wilson S. D., Horne D. W. Use of glycerol-cryoprotected Lactobacillus casei for microbiological assay of folic acid. Clin Chem. 1982 May;28(5):1198–1200. [PubMed] [Google Scholar]
  55. Wilson V. L., Jones P. A. Chemical carcinogen-mediated decreases in DNA 5-methylcytosine content of BALB/3T3 cells. Carcinogenesis. 1984 Aug;5(8):1027–1031. doi: 10.1093/carcin/5.8.1027. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES