Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1996 Nov;149(5):1553–1564.

Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis.

M Loda 1, P Capodieci 1, R Mishra 1, H Yao 1, C Corless 1, W Grigioni 1, Y Wang 1, C Magi-Galluzzi 1, P J Stork 1
PMCID: PMC1865259  PMID: 8909245

Abstract

Many mitogens and human oncogenes activate extracellular regulated kinases (ERKs), which in turn convey proliferation signals. ERKs or mitogen-activated protein (MAP) kinases are inactivated in vitro by MAP kinase phosphatases (MKPs). The gene encoding one of these MKPs, MKP-1, is a serum-inducible gene and is transcriptionally activated by mitogenic signals in cultured cells. As MKP-1 has been shown to block DNA synthesis by inhibiting ERKs when expressed at elevated levels in cultured cells, it has been suggested that it may act as a tumor suppressor. MKP-1 mRNA and MAP kinase (ERK-1 and -2) protein expression was assessed in 164 human epithelial tumors of diverse tissue origin by in situ hybridization and immunohistochemistry. MKP-1 was overexpressed in the early phases of prostate, colon, and bladder carcinogenesis, with progressive loss of expression with higher histological grade and in metastases. In contrast, breast carcinomas showed significant MKP-1 expression even when poorly differentiated or in late stages of the disease. MKP-1, ERK-1, and ERK-2 were co-expressed in most tumors examined. In a subset of 15 tumors, ERK-1 enzymatic activity as well as structural alterations that might be responsible for loss of function of MKP-1 during tumor progression, were examined. ERK-1 enzymatic activity was found to be elevated despite MKP-1 overexpression. No loss of 5q35-ter (containing the MKP-1 locus) was detected by polymerase chain reaction in metastases compared with primary tumors. Finally, no mutations were found in the catalytic domain of MKP-1. These data indicate that MKP-1 is an early marker for a wide range of human epithelial tumors and suggest that MKP-1 does not behave as a tumor suppressor in epithelial tumors.

Full text

PDF
1553

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Gomez N., Moorhead G., Lewis T., Keyse S. M., Cohen P. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol. 1995 Mar 1;5(3):283–295. doi: 10.1016/s0960-9822(95)00059-5. [DOI] [PubMed] [Google Scholar]
  2. Alessi D. R., Smythe C., Keyse S. M. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Oncogene. 1993 Jul;8(7):2015–2020. [PubMed] [Google Scholar]
  3. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  4. Bos J. L. ras oncogenes in human cancer: a review. Cancer Res. 1989 Sep 1;49(17):4682–4689. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Charles C. H., Abler A. S., Lau L. F. cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene. 1992 Jan;7(1):187–190. [PubMed] [Google Scholar]
  7. Charles C. H., Sun H., Lau L. F., Tonks N. K. The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5292–5296. doi: 10.1073/pnas.90.11.5292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chu Y., Solski P. A., Khosravi-Far R., Der C. J., Kelly K. The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem. 1996 Mar 15;271(11):6497–6501. doi: 10.1074/jbc.271.11.6497. [DOI] [PubMed] [Google Scholar]
  9. Crews C. M., Erikson R. L. Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell. 1993 Jul 30;74(2):215–217. doi: 10.1016/0092-8674(93)90411-i. [DOI] [PubMed] [Google Scholar]
  10. Fanning P., Bulovas K., Saini K. S., Libertino J. A., Joyce A. D., Summerhayes I. C. Elevated expression of pp60c-src in low grade human bladder carcinoma. Cancer Res. 1992 Mar 15;52(6):1457–1462. [PubMed] [Google Scholar]
  11. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  12. Galaktionov K., Lee A. K., Eckstein J., Draetta G., Meckler J., Loda M., Beach D. CDC25 phosphatases as potential human oncogenes. Science. 1995 Sep 15;269(5230):1575–1577. doi: 10.1126/science.7667636. [DOI] [PubMed] [Google Scholar]
  13. Guan K. L., Broyles S. S., Dixon J. E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature. 1991 Mar 28;350(6316):359–362. doi: 10.1038/350359a0. [DOI] [PubMed] [Google Scholar]
  14. Guan K. L., Butch E. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase. J Biol Chem. 1995 Mar 31;270(13):7197–7203. doi: 10.1074/jbc.270.13.7197. [DOI] [PubMed] [Google Scholar]
  15. Guan K., Hakes D. J., Wang Y., Park H. D., Cooper T. G., Dixon J. E. A yeast protein phosphatase related to the vaccinia virus VH1 phosphatase is induced by nitrogen starvation. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12175–12179. doi: 10.1073/pnas.89.24.12175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Housman D. Human DNA polymorphism. N Engl J Med. 1995 Feb 2;332(5):318–320. doi: 10.1056/NEJM199502023320508. [DOI] [PubMed] [Google Scholar]
  17. Hudson T. J., Engelstein M., Lee M. K., Ho E. C., Rubenfield M. J., Adams C. P., Housman D. E., Dracopoli N. C. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. Genomics. 1992 Jul;13(3):622–629. doi: 10.1016/0888-7543(92)90133-d. [DOI] [PubMed] [Google Scholar]
  18. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  19. Jessup J. M., Lavin P. T., Andrews C. W., Jr, Loda M., Mercurio A., Minsky B. D., Mies C., Cukor B., Bleday R., Steele G., Jr Sucrase-isomaltase is an independent prognostic marker for colorectal carcinoma. Dis Colon Rectum. 1995 Dec;38(12):1257–1264. doi: 10.1007/BF02049149. [DOI] [PubMed] [Google Scholar]
  20. Kastrinakis W. V., Ramchurren N., Rieger K. M., Hess D. T., Loda M., Steele G., Summerhayes I. C. Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression. Oncogene. 1995 Aug 17;11(4):647–652. [PubMed] [Google Scholar]
  21. Kawamata H., Kameyama S., Oyasu R. In vitro and in vivo acceleration of the neoplastic phenotype of a low-tumorigenicity rat bladder carcinoma cell line by transfected transforming growth factor-alpha. Mol Carcinog. 1994 Apr;9(4):210–219. doi: 10.1002/mc.2940090405. [DOI] [PubMed] [Google Scholar]
  22. Keyse S. M., Emslie E. A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992 Oct 15;359(6396):644–647. doi: 10.1038/359644a0. [DOI] [PubMed] [Google Scholar]
  23. Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
  24. Kumagai A., Dunphy W. G. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell. 1992 Jul 10;70(1):139–151. doi: 10.1016/0092-8674(92)90540-s. [DOI] [PubMed] [Google Scholar]
  25. Kwak S. P., Dixon J. E. Multiple dual specificity protein tyrosine phosphatases are expressed and regulated differentially in liver cell lines. J Biol Chem. 1995 Jan 20;270(3):1156–1160. doi: 10.1074/jbc.270.3.1156. [DOI] [PubMed] [Google Scholar]
  26. Kwak S. P., Hakes D. J., Martell K. J., Dixon J. E. Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene. J Biol Chem. 1994 Feb 4;269(5):3596–3604. [PubMed] [Google Scholar]
  27. Lange-Carter C. A., Pleiman C. M., Gardner A. M., Blumer K. J., Johnson G. L. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993 Apr 16;260(5106):315–319. doi: 10.1126/science.8385802. [DOI] [PubMed] [Google Scholar]
  28. Lee A. K., Wiley B., Loda M., Bosari S., Dugan J. M., Hamilton W., Heatley G. J., Cook L., Silverman M. L. DNA ploidy, proliferation, and neu-oncogene protein overexpression in breast carcinoma. Mod Pathol. 1992 Jan;5(1):61–67. [PubMed] [Google Scholar]
  29. Liu Y., Gorospe M., Yang C., Holbrook N. J. Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP-1-dependent gene activation. J Biol Chem. 1995 Apr 14;270(15):8377–8380. doi: 10.1074/jbc.270.15.8377. [DOI] [PubMed] [Google Scholar]
  30. Loda M., Lipman J., Cukor B., Bur M., Kwan P., DeLellis R. A. Nodular foci in parathyroid adenomas and hyperplasias: an immunohistochemical analysis of proliferative activity. Hum Pathol. 1994 Oct;25(10):1050–1056. doi: 10.1016/0046-8177(94)90064-7. [DOI] [PubMed] [Google Scholar]
  31. Louis D. N., von Deimling A., Seizinger B. R. A (CA)n dinucleotide repeat assay for evaluating loss of allelic heterozygosity in small and archival human brain tumor specimens. Am J Pathol. 1992 Oct;141(4):777–782. [PMC free article] [PubMed] [Google Scholar]
  32. Luttrell D. K., Lee A., Lansing T. J., Crosby R. M., Jung K. D., Willard D., Luther M., Rodriguez M., Berman J., Gilmer T. M. Involvement of pp60c-src with two major signaling pathways in human breast cancer. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):83–87. doi: 10.1073/pnas.91.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Martell K. J., Kwak S., Hakes D. J., Dixon J. E., Trent J. M. Chromosomal localization of four human VH1-like protein-tyrosine phosphatases. Genomics. 1994 Jul 15;22(2):462–464. doi: 10.1006/geno.1994.1411. [DOI] [PubMed] [Google Scholar]
  34. Martell K. J., Seasholtz A. F., Kwak S. P., Clemens K. K., Dixon J. E. hVH-5: a protein tyrosine phosphatase abundant in brain that inactivates mitogen-activated protein kinase. J Neurochem. 1995 Oct;65(4):1823–1833. doi: 10.1046/j.1471-4159.1995.65041823.x. [DOI] [PubMed] [Google Scholar]
  35. Misra-Press A., Rim C. S., Yao H., Roberson M. S., Stork P. J. A novel mitogen-activated protein kinase phosphatase. Structure, expression, and regulation. J Biol Chem. 1995 Jun 16;270(24):14587–14596. doi: 10.1074/jbc.270.24.14587. [DOI] [PubMed] [Google Scholar]
  36. Mizukami Y., Nonomura A., Noguchi M., Taniya T., Koyasaki N., Saito Y., Hashimoto T., Matsubara F., Yanaihara N. Immunohistochemical study of oncogene product ras p21, c-myc and growth factor EGF in breast carcinomas. Anticancer Res. 1991 Jul-Aug;11(4):1485–1494. [PubMed] [Google Scholar]
  37. Muda M., Boschert U., Dickinson R., Martinou J. C., Martinou I., Camps M., Schlegel W., Arkinstall S. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem. 1996 Feb 23;271(8):4319–4326. doi: 10.1074/jbc.271.8.4319. [DOI] [PubMed] [Google Scholar]
  38. Muthuswamy S. K., Siegel P. M., Dankort D. L., Webster M. A., Muller W. J. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol Cell Biol. 1994 Jan;14(1):735–743. doi: 10.1128/mcb.14.1.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Müller U., Warman M. L., Mulliken J. B., Weber J. L. Assignment of a gene locus involved in craniosynostosis to chromosome 5qter. Hum Mol Genet. 1993 Feb;2(2):119–122. doi: 10.1093/hmg/2.2.119. [DOI] [PubMed] [Google Scholar]
  40. Noguchi T., Metz R., Chen L., Mattéi M. G., Carrasco D., Bravo R. Structure, mapping, and expression of erp, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth. Mol Cell Biol. 1993 Sep;13(9):5195–5205. doi: 10.1128/mcb.13.9.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Peehl D. M. Oncogenes in prostate cancer. An update. Cancer. 1993 Feb 1;71(3 Suppl):1159–1164. doi: 10.1002/1097-0142(19930201)71:3+<1159::aid-cncr2820711439>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  43. Potter M. Immunoglobulin-producing tumors and myeloma proteins of mice. Physiol Rev. 1972 Jul;52(3):631–719. doi: 10.1152/physrev.1972.52.3.631. [DOI] [PubMed] [Google Scholar]
  44. Rohan P. J., Davis P., Moskaluk C. A., Kearns M., Krutzsch H., Siebenlist U., Kelly K. PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science. 1993 Mar 19;259(5102):1763–1766. doi: 10.1126/science.7681221. [DOI] [PubMed] [Google Scholar]
  45. Ruderman J. V. MAP kinase and the activation of quiescent cells. Curr Opin Cell Biol. 1993 Apr;5(2):207–213. doi: 10.1016/0955-0674(93)90104-x. [DOI] [PubMed] [Google Scholar]
  46. Seth A., Gonzalez F. A., Gupta S., Raden D. L., Davis R. J. Signal transduction within the nucleus by mitogen-activated protein kinase. J Biol Chem. 1992 Dec 5;267(34):24796–24804. [PubMed] [Google Scholar]
  47. Sidransky D., Messing E. Molecular genetics and biochemical mechanisms in bladder cancer. Oncogenes, tumor suppressor genes, and growth factors. Urol Clin North Am. 1992 Nov;19(4):629–639. [PubMed] [Google Scholar]
  48. Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., McGuire W. L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177–182. doi: 10.1126/science.3798106. [DOI] [PubMed] [Google Scholar]
  49. Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989 May 12;244(4905):707–712. doi: 10.1126/science.2470152. [DOI] [PubMed] [Google Scholar]
  50. Stein D., Wu J., Fuqua S. A., Roonprapunt C., Yajnik V., D'Eustachio P., Moskow J. J., Buchberg A. M., Osborne C. K., Margolis B. The SH2 domain protein GRB-7 is co-amplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 1994 Mar 15;13(6):1331–1340. doi: 10.1002/j.1460-2075.1994.tb06386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stork P., Loda M., Bosari S., Wiley B., Poppenhusen K., Wolfe H. Detection of K-ras mutations in pancreatic and hepatic neoplasms by non-isotopic mismatched polymerase chain reaction. Oncogene. 1991 May;6(5):857–862. [PubMed] [Google Scholar]
  52. Sun H., Charles C. H., Lau L. F., Tonks N. K. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell. 1993 Nov 5;75(3):487–493. doi: 10.1016/0092-8674(93)90383-2. [DOI] [PubMed] [Google Scholar]
  53. Sun H., Tonks N. K., Bar-Sagi D. Inhibition of Ras-induced DNA synthesis by expression of the phosphatase MKP-1. Science. 1994 Oct 14;266(5183):285–288. doi: 10.1126/science.7939666. [DOI] [PubMed] [Google Scholar]
  54. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  55. Thompson T. C., Southgate J., Kitchener G., Land H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell. 1989 Mar 24;56(6):917–930. doi: 10.1016/0092-8674(89)90625-9. [DOI] [PubMed] [Google Scholar]
  56. Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J. 1992 Dec 1;288(Pt 2):351–355. doi: 10.1042/bj2880351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Traverse S., Seedorf K., Paterson H., Marshall C. J., Cohen P., Ullrich A. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr Biol. 1994 Aug 1;4(8):694–701. doi: 10.1016/s0960-9822(00)00154-8. [DOI] [PubMed] [Google Scholar]
  58. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  59. Ward Y., Gupta S., Jensen P., Wartmann M., Davis R. J., Kelly K. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature. 1994 Feb 17;367(6464):651–654. doi: 10.1038/367651a0. [DOI] [PubMed] [Google Scholar]
  60. Warrington J. A., Wasmuth J. J. Sublocalization of seven human simple sequence repeat polymorphic markers: D5S349, D5S351, and D5S355 to 5q11.2-q13.1, D5S350 to 5p13.1-p14, D5S352 to 5q31.2-q33.1, D5S353 to 5q33.2-qter, and D5S354 to 5q13.2-q15. Genomics. 1993 Jan;15(1):241–242. doi: 10.1006/geno.1993.1049. [DOI] [PubMed] [Google Scholar]
  61. Weber J. L., Polymeropoulos M. H., May P. E., Kwitek A. E., Xiao H., McPherson J. D., Wasmuth J. J. Mapping of human chromosome 5 microsatellite DNA polymorphisms. Genomics. 1991 Nov;11(3):695–700. doi: 10.1016/0888-7543(91)90077-r. [DOI] [PubMed] [Google Scholar]
  62. Wu J., Lau L. F., Sturgill T. W. Rapid deactivation of MAP kinase in PC12 cells occurs independently of induction of phosphatase MKP-1. FEBS Lett. 1994 Oct 10;353(1):9–12. doi: 10.1016/0014-5793(94)01000-5. [DOI] [PubMed] [Google Scholar]
  63. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  64. Yu M., Leav B. A., Leav I., Merk F. B., Wolfe H. J., Ho S. M. Early alterations in ras protooncogene mRNA expression in testosterone and estradiol-17 beta induced prostatic dysplasia of noble rats. Lab Invest. 1993 Jan;68(1):33–44. [PubMed] [Google Scholar]
  65. Zhau H. E., Zhang X., von Eschenbach A. C., Scorsone K., Babaian R. J., Ro J. Y., Hung M. C. Amplification and expression of the c-erb B-2/neu proto-oncogene in human bladder cancer. Mol Carcinog. 1990;3(5):254–257. doi: 10.1002/mc.2940030503. [DOI] [PubMed] [Google Scholar]
  66. Zinck R., Cahill M. A., Kracht M., Sachsenmaier C., Hipskind R. A., Nordheim A. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol Cell Biol. 1995 Sep;15(9):4930–4938. doi: 10.1128/mcb.15.9.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES