Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1974 Jul;28(1):124–128. doi: 10.1128/am.28.1.124-128.1974

Physiology of Sporeforming Bacteria Associated with Insects: Minimal Nutritional Requirements for Growth, Sporulation, and Parasporal Crystal Formation of Bacillus thuringiensis

Kenneth W Nickerson 1,1, Lee A Bulla Jr 1,2
PMCID: PMC186607  PMID: 4844274

Abstract

A defined medium is described in which 18 strains of Bacillus thuringiensis representing the 12 established serotypes grow, sporulate, and produce a parasporal crystal. This minimal medium contains glucose and salts supplemented with either aspartate, glutamate, or citrate. These organic acids are required and cannot be replaced by vitamin mixtures or succinate even though succinate is taken up at a rate similar to that of aspartate, glutamate, and citrate.

Full text

PDF
124

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulla L. A., Jr, St Julian G., Rhodes R. A. Physiology of sporeforming bacteria associated with insects. 3. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation. Can J Microbiol. 1971 Aug;17(8):1073–1079. doi: 10.1139/m71-170. [DOI] [PubMed] [Google Scholar]
  2. Bulla L. A., St Julian G., Rhodes R. A., Hesseltine C. W. Scanning electron and phase-contrast microscopy of bacterial spores. Appl Microbiol. 1969 Sep;18(3):490–495. doi: 10.1128/am.18.3.490-495.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buono F., Testa R., Lundgren D. G. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J Bacteriol. 1966 Jun;91(6):2291–2299. doi: 10.1128/jb.91.6.2291-2299.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conner R. M., Hansen P. A. Effects of valine, leucine, and isoleucine on the growth of Bacillus thuringiensis and related bacteria. J Invertebr Pathol. 1967 Mar;9(1):12–18. doi: 10.1016/0022-2011(67)90036-5. [DOI] [PubMed] [Google Scholar]
  5. Delafield F. P., Somerville H. J., Rittenberg S. C. Immunological homology between crystal and spore protein of Bacillus thuringiensis. J Bacteriol. 1968 Sep;96(3):713–720. doi: 10.1128/jb.96.3.713-720.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghei Om K., Kay William W. A Dicarboxyclic acid transport system in Bacillus subtilis. FEBS Lett. 1972 Feb 1;20(2):137–140. doi: 10.1016/0014-5793(72)80777-4. [DOI] [PubMed] [Google Scholar]
  7. HAYNES W. C., WICKERHAM L. J., HESSELTINE C. W. Maintenance of cultures of industrially important microorganisms. Appl Microbiol. 1955 Nov;3(6):361–368. doi: 10.1128/am.3.6.361-368.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heimpel A. M. A taxonomic key proposed for the species of the "crystalliferous bacteria". J Invertebr Pathol. 1967 Sep;9(3):364–373. doi: 10.1016/0022-2011(67)90072-9. [DOI] [PubMed] [Google Scholar]
  9. NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NAKATA H. M. ORGANIC NUTRIENTS REQUIRED FOR GROWTH AND SPORULATION OF BACILLUS CEREUS. J Bacteriol. 1964 Nov;88:1522–1524. doi: 10.1128/jb.88.5.1522-1524.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nickerson K. W., St Julian G., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):129–132. doi: 10.1128/am.28.1.129-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rogoff M. H., Yousten A. A. Bacillus thuringiensis: microbiological considerations. Annu Rev Microbiol. 1969;23:357–386. doi: 10.1146/annurev.mi.23.100169.002041. [DOI] [PubMed] [Google Scholar]
  13. Romano A. H., Kornberg H. L. Regulation of sugar utilization by Aspergillus nidulans. Biochim Biophys Acta. 1968 Jun 24;158(3):491–493. doi: 10.1016/0304-4165(68)90312-7. [DOI] [PubMed] [Google Scholar]
  14. Singer S., Goodman N. S., Rogoff M. H. Defined media for the study of bacilli pathogenic to insects. Ann N Y Acad Sci. 1966 Oct 7;139(1):16–23. doi: 10.1111/j.1749-6632.1966.tb41181.x. [DOI] [PubMed] [Google Scholar]
  15. Singer S., Rogoff M. H. Inhibition of growth of Bacillus thuringiensis by amino acids in defined media. J Invertebr Pathol. 1968 Oct;12(1):98–104. doi: 10.1016/0022-2011(68)90249-8. [DOI] [PubMed] [Google Scholar]
  16. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  17. de Barjac H., Bonnefoi A. A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J Invertebr Pathol. 1968 Sep;11(3):335–347. doi: 10.1016/0022-2011(68)90182-1. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES