Abstract
Radiorespirometry was used to compare the primary pathways of glucose catabolism in 18 strains of Bacillus thuringiensis representing the 12 established serotypes. Every strain utilizes the Embden-Meyerhof-Parnas pathway almost exclusively; pentose-phosphate pathway participation is minor. The Embden-Meyerhof-Parnas pathway predominates regardless of whether the cells were grown in a minimal medium or one containing yeast extract. The results indicate that the absolute requirement for citrate and related compounds is not a result of defective citrate or glucose transport and metabolism.
Full text
PDF![129](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64fc/186608/43f0f01bc758/applmicro00013-0151.png)
![130](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64fc/186608/2266b4b7ae91/applmicro00013-0152.png)
![131](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64fc/186608/c60da7cc94cd/applmicro00013-0153.png)
![132](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64fc/186608/003627a6b41b/applmicro00013-0154.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bulla L. A., Jr, St Julian G., Rhodes R. A. Physiology of sporeforming bacteria associated with insects. 3. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation. Can J Microbiol. 1971 Aug;17(8):1073–1079. doi: 10.1139/m71-170. [DOI] [PubMed] [Google Scholar]
- Bulla L. A., St Julian G., Rhodes R. A., Hesseltine C. W. Physiology of sporeforming bacteria associated with insects. I. Glucose catabolism in vegetative cells. Can J Microbiol. 1970 Apr;16(4):243–248. doi: 10.1139/m70-045. [DOI] [PubMed] [Google Scholar]
- Conner R. M., Hansen P. A. Effects of valine, leucine, and isoleucine on the growth of Bacillus thuringiensis and related bacteria. J Invertebr Pathol. 1967 Mar;9(1):12–18. doi: 10.1016/0022-2011(67)90036-5. [DOI] [PubMed] [Google Scholar]
- GOLDMAN M., BLUMENTHAL H. J. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS CEREUS. J Bacteriol. 1964 Feb;87:377–386. doi: 10.1128/jb.87.2.377-386.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDMAN M., BLUMENTHAL H. J. PATHWAYS OF GLUCOSE CATABOLISM IN BACILLUS SUBTILIS. J Bacteriol. 1963 Aug;86:303–311. doi: 10.1128/jb.86.2.303-311.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickerson K. W., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):124–128. doi: 10.1128/am.28.1.124-128.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nickerson K. W., De Pinto J., Bulla L. A., Jr Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle. J Bacteriol. 1974 Jan;117(1):321–323. doi: 10.1128/jb.117.1.321-323.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogoff M. H., Yousten A. A. Bacillus thuringiensis: microbiological considerations. Annu Rev Microbiol. 1969;23:357–386. doi: 10.1146/annurev.mi.23.100169.002041. [DOI] [PubMed] [Google Scholar]
- Romano A. H., Kornberg H. L. Regulation of sugar utilization by Aspergillus nidulans. Biochim Biophys Acta. 1968 Jun 24;158(3):491–493. doi: 10.1016/0304-4165(68)90312-7. [DOI] [PubMed] [Google Scholar]
- Somerville H. J., Jones M. L. DNA competition studies within the Bacillus cereus group of bacilli. J Gen Microbiol. 1972 Nov;73(2):257–265. doi: 10.1099/00221287-73-2-257. [DOI] [PubMed] [Google Scholar]
- WANG C. H., KRACKOV J. K. The catabolic fate of glucose in Bacillus subtilis. J Biol Chem. 1962 Dec;237:3614–3622. [PubMed] [Google Scholar]
- de Barjac H., Bonnefoi A. A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J Invertebr Pathol. 1968 Sep;11(3):335–347. doi: 10.1016/0022-2011(68)90182-1. [DOI] [PubMed] [Google Scholar]