Skip to main content
Gut logoLink to Gut
. 2003 May;52(Suppl 2):ii31–ii41. doi: 10.1136/gut.52.suppl_2.ii31

Chronic pancreatitis and cystic fibrosis

H Witt
PMCID: PMC1867753  PMID: 12651880

Abstract

Recent discoveries of trypsinogen and trypsin inhibitor mutations in patients with chronic pancreatitis (CP) support the hypothesis that an inappropriate activation of pancreatic zymogens to active enzymes within the pancreatic parenchyma starts the inflammatory process. Current data suggest that CP may be inherited dominant, recessive, or complex as a result of mutations in the above mentioned or yet unidentified genes. Evaluation of patients with CP should include genetic testing. Cystic fibrosis (CF) is an autosomal recessive inherited disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene and is characterised by pancreatic insufficiency and chronic bronchopulmonary infection. The progression and severity of pulmonary disease differs considerably between people with identical CFTR mutations and does not seem to correlate with the type or class of the CFTR mutation. The identification of further disease modifying genetic factors will increase the pathophysiological understanding and may help to identify new therapeutic targets.

Full Text

The Full Text of this article is available as a PDF (235.4 KB).

Figure 1 .

Figure 1

Model of inherited pancreatitis. (A) Condition in the normal pancreas: trypsin resulting from autoactivation of trypsinogen within the pancreatic parenchyma is inhibited by SPINK1 and in the second line by mesotrypsin or trypsin. This defence mechanism prevents the pancreas from activation of the pancreatic enzyme cascade and autodigestion. (B) Condition in inherited pancreatitis: mutations in PRSS1 or in SPINK1 lead to an imbalance of proteases and their inhibitors within the pancreatic parenchyma resulting in an inappropriate conversion of pancreatic zymogens to active enzymes with autodigestion and inflammation. Mutations in CFTR may disturb this delicate balance by intrapancreatic acidification or by a defective apical trafficking of zymogen granules and thus facilitate the intrapancreatic activation of digestive enzymes. Dark boxes represent products of mutated genes (modified from reference 34). (AP, activation peptide).

Figure 2 .

Figure 2

Schematic presentation of the influence of different genetic and environmental factors on the pathogenesis of chronic pancreatitis. ACP, alcoholic chronic pancreatitis; TCP, tropical calcific pancreatitis; ICP, idiopathic pancreatitis; HP, hereditary pancreatitis.

Figure 3 .

Figure 3

CFTR mutations classes. The subdivision reflects the known or predicted biosynthetic and functional consequences.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammann R. W. A clinically based classification system for alcoholic chronic pancreatitis: summary of an international workshop on chronic pancreatitis. Pancreas. 1997 Apr;14(3):215–221. doi: 10.1097/00006676-199704000-00001. [DOI] [PubMed] [Google Scholar]
  2. Ammann R. W., Buehler H., Muench R., Freiburghaus A. W., Siegenthaler W. Differences in the natural history of idiopathic (nonalcoholic) and alcoholic chronic pancreatitis. A comparative long-term study of 287 patients. Pancreas. 1987;2(4):368–377. doi: 10.1097/00006676-198707000-00002. [DOI] [PubMed] [Google Scholar]
  3. Arkwright P. D., Laurie S., Super M., Pravica V., Schwarz M. J., Webb A. K., Hutchinson I. V. TGF-beta(1) genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax. 2000 Jun;55(6):459–462. doi: 10.1136/thorax.55.6.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aron Y., Polla B. S., Bienvenu T., Dall'ava J., Dusser D., Hubert D. HLA class II polymorphism in cystic fibrosis. A possible modifier of pulmonary phenotype. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1464–1468. doi: 10.1164/ajrccm.159.5.9807046. [DOI] [PubMed] [Google Scholar]
  5. Atlas A. B., Orenstein S. R., Orenstein D. M. Pancreatitis in young children with cystic fibrosis. J Pediatr. 1992 May;120(5):756–759. doi: 10.1016/s0022-3476(05)80242-2. [DOI] [PubMed] [Google Scholar]
  6. Audrézet Marie-Pierre, Chen Jian-Min, Le Maréchal Cedric, Ruszniewski Philippe, Robaszkiewicz Michel, Raguénès Odile, Quéré Isabelle, Scotet Virginie, Férec Claude. Determination of the relative contribution of three genes-the cystic fibrosis transmembrane conductance regulator gene, the cationic trypsinogen gene, and the pancreatic secretory trypsin inhibitor gene-to the etiology of idiopathic chronic pancreatitis. Eur J Hum Genet. 2002 Feb;10(2):100–106. doi: 10.1038/sj.ejhg.5200786. [DOI] [PubMed] [Google Scholar]
  7. Awad M. R., El-Gamel A., Hasleton P., Turner D. M., Sinnott P. J., Hutchinson I. V. Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation. 1998 Oct 27;66(8):1014–1020. doi: 10.1097/00007890-199810270-00009. [DOI] [PubMed] [Google Scholar]
  8. Balfour-Lynn I. M., Laverty A., Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child. 1996 Oct;75(4):319–322. doi: 10.1136/adc.75.4.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bank S., Marks I. N., Novis B. Sweat electrolytes in chronic pancreatitis. Am J Dig Dis. 1978 Feb;23(2):178–181. doi: 10.1007/BF01073197. [DOI] [PubMed] [Google Scholar]
  10. Baranov V. S., Ivaschenko T., Bakay B., Aseev M., Belotserkovskaya R., Baranova H., Malet P., Perriot J., Mouraire P., Baskakov V. N. Proportion of the GSTM1 0/0 genotype in some Slavic populations and its correlation with cystic fibrosis and some multifactorial diseases. Hum Genet. 1996 Apr;97(4):516–520. doi: 10.1007/BF02267078. [DOI] [PubMed] [Google Scholar]
  11. Bartelt D. C., Shapanka R., Greene L. J. The primary structure of the human pancreatic secretory trypsin inhibitor. Amino acid sequence of the reduced S-aminoethylated protein. Arch Biochem Biophys. 1977 Feb;179(1):189–199. doi: 10.1016/0003-9861(77)90103-5. [DOI] [PubMed] [Google Scholar]
  12. Bombieri C., Benetazzo M., Saccomani A., Belpinati F., Gilè L. S., Luisetti M., Pignatti P. F. Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease. Hum Genet. 1998 Dec;103(6):718–722. doi: 10.1007/s004390050897. [DOI] [PubMed] [Google Scholar]
  13. Bombieri C., Luisetti M., Belpinati F., Zuliani E., Beretta A., Baccheschi J., Casali L., Pignatti P. F. Increased frequency of CFTR gene mutations in sarcoidosis: a case/control association study. Eur J Hum Genet. 2000 Sep;8(9):717–720. doi: 10.1038/sj.ejhg.5200524. [DOI] [PubMed] [Google Scholar]
  14. Braxel C., Versieck J., Lemey G., Vanballenberghe L., Barbier F. Alpha 1-antitrypsin in pancreatitis. Digestion. 1982;23(2):93–96. doi: 10.1159/000198693. [DOI] [PubMed] [Google Scholar]
  15. COMFORT M. W., STEINBERG A. G. Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology. 1952 May;21(1):54–63. [PubMed] [Google Scholar]
  16. Casals T., Bassas L., Ruiz-Romero J., Chillón M., Giménez J., Ramos M. D., Tapia G., Narváez H., Nunes V., Estivill X. Extensive analysis of 40 infertile patients with congenital absence of the vas deferens: in 50% of cases only one CFTR allele could be detected. Hum Genet. 1995 Feb;95(2):205–211. doi: 10.1007/BF00209403. [DOI] [PubMed] [Google Scholar]
  17. Casals T., Ramos M. D., Giménez J., Larriba S., Nunes V., Estivill X. High heterogeneity for cystic fibrosis in Spanish families: 75 mutations account for 90% of chromosomes. Hum Genet. 1997 Dec;101(3):365–370. doi: 10.1007/s004390050643. [DOI] [PubMed] [Google Scholar]
  18. Castellani C., Quinzii C., Altieri S., Mastella G., Assael B. M. A pilot survey of cystic fibrosis clinical manifestations in CFTR mutation heterozygotes. Genet Test. 2001 Fall;5(3):249–254. doi: 10.1089/10906570152742317. [DOI] [PubMed] [Google Scholar]
  19. Chen J. M., Mercier B., Audrezet M. P., Ferec C. Mutational analysis of the human pancreatic secretory trypsin inhibitor (PSTI) gene in hereditary and sporadic chronic pancreatitis. J Med Genet. 2000 Jan;37(1):67–69. doi: 10.1136/jmg.37.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chen J. M., Mercier B., Audrezet M. P., Raguenes O., Quere I., Ferec C. Mutations of the pancreatic secretory trypsin inhibitor (PSTI) gene in idiopathic chronic pancreatitis. Gastroenterology. 2001 Mar;120(4):1061–1064. doi: 10.1053/gast.2001.23094. [DOI] [PubMed] [Google Scholar]
  21. Chen J. M., Piepoli Bis A., Le Bodic L., Ruszniewski P., Robaszkiewicz M., Deprez P. H., Raguenes O., Quere I., Andriulli A., Ferec C. Mutational screening of the cationic trypsinogen gene in a large cohort of subjects with idiopathic chronic pancreatitis. Clin Genet. 2001 Mar;59(3):189–193. doi: 10.1034/j.1399-0004.2001.590308.x. [DOI] [PubMed] [Google Scholar]
  22. Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., O'Riordan C. R., Smith A. E. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990 Nov 16;63(4):827–834. doi: 10.1016/0092-8674(90)90148-8. [DOI] [PubMed] [Google Scholar]
  23. Chillón M., Casals T., Mercier B., Bassas L., Lissens W., Silber S., Romey M. C., Ruiz-Romero J., Verlingue C., Claustres M. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 1995 Jun 1;332(22):1475–1480. doi: 10.1056/NEJM199506013322204. [DOI] [PubMed] [Google Scholar]
  24. Chu C. S., Trapnell B. C., Curristin S., Cutting G. R., Crystal R. G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993 Feb;3(2):151–156. doi: 10.1038/ng0293-151. [DOI] [PubMed] [Google Scholar]
  25. Chu C. S., Trapnell B. C., Murtagh J. J., Jr, Moss J., Dalemans W., Jallat S., Mercenier A., Pavirani A., Lecocq J. P., Cutting G. R. Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J. 1991 Jun;10(6):1355–1363. doi: 10.1002/j.1460-2075.1991.tb07655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Cohn J. A., Friedman K. J., Noone P. G., Knowles M. R., Silverman L. M., Jowell P. S. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med. 1998 Sep 3;339(10):653–658. doi: 10.1056/NEJM199809033391002. [DOI] [PubMed] [Google Scholar]
  27. Colomb E., Figarella C. Comparative studies on the mechanism of activation of the two human trypsinogens. Biochim Biophys Acta. 1979 Dec 7;571(2):343–351. doi: 10.1016/0005-2744(79)90104-9. [DOI] [PubMed] [Google Scholar]
  28. Colomb E., Guy O., Deprez P., Michel R., Figarella C. The two human trypsinogens: catalytic properties of the corresponding trypsins. Biochim Biophys Acta. 1978 Jul 7;525(1):186–193. doi: 10.1016/0005-2744(78)90213-9. [DOI] [PubMed] [Google Scholar]
  29. Colombo C., Apostolo M. G., Ferrari M., Seia M., Genoni S., Giunta A., Sereni L. P. Analysis of risk factors for the development of liver disease associated with cystic fibrosis. J Pediatr. 1994 Mar;124(3):393–399. doi: 10.1016/s0022-3476(94)70361-2. [DOI] [PubMed] [Google Scholar]
  30. Costes B., Girodon E., Ghanem N., Flori E., Jardin A., Soufir J. C., Goossens M. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur J Hum Genet. 1995;3(5):285–293. doi: 10.1159/000472312. [DOI] [PubMed] [Google Scholar]
  31. Culard J. F., Desgeorges M., Costa P., Laussel M., Razakatzara G., Navratil H., Demaille J., Claustres M. Analysis of the whole CFTR coding regions and splice junctions in azoospermic men with congenital bilateral aplasia of epididymis or vas deferens. Hum Genet. 1994 Apr;93(4):467–470. doi: 10.1007/BF00201678. [DOI] [PubMed] [Google Scholar]
  32. Dahl M., Tybjaerg-Hansen A., Lange P., Nordestgaard B. G. DeltaF508 heterozygosity in cystic fibrosis and susceptibility to asthma. Lancet. 1998 Jun 27;351(9120):1911–1913. doi: 10.1016/s0140-6736(97)11419-2. [DOI] [PubMed] [Google Scholar]
  33. De Angelis C., Valente G., Spaccapietra M., Angonese C., Del Favero G., Naccarato R., Andriulli A. Histological study of alcoholic, nonalcoholic, and obstructive chronic pancreatitis. Pancreas. 1992;7(2):193–196. doi: 10.1097/00006676-199203000-00010. [DOI] [PubMed] [Google Scholar]
  34. Drenth J. P. H., te Morsche R., Jansen J. B. M. J. Mutations in serine protease inhibitor Kazal type 1 are strongly associated with chronic pancreatitis. Gut. 2002 May;50(5):687–692. doi: 10.1136/gut.50.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Dumur V., Gervais R., Rigot J. M., Lafitte J. J., Manouvrier S., Biserte J., Mazeman E., Roussel P. Abnormal distribution of CF delta F508 allele in azoospermic men with congenital aplasia of epididymis and vas deferens. Lancet. 1990 Aug 25;336(8713):512–512. doi: 10.1016/0140-6736(90)92066-q. [DOI] [PubMed] [Google Scholar]
  36. Durbec J. P., Sarles H. Multicenter survey of the etiology of pancreatic diseases. Relationship between the relative risk of developing chronic pancreaitis and alcohol, protein and lipid consumption. Digestion. 1978;18(5-6):337–350. doi: 10.1159/000198221. [DOI] [PubMed] [Google Scholar]
  37. Duthie A., Doherty D. G., Donaldson P. T., Scott-Jupp R., Tanner M. S., Eddleston A. L., Mowat A. P. The major histocompatibility complex influences the development of chronic liver disease in male children and young adults with cystic fibrosis. J Hepatol. 1995 Nov;23(5):532–537. doi: 10.1016/0168-8278(95)80058-1. [DOI] [PubMed] [Google Scholar]
  38. Duthie A., Doherty D. G., Williams C., Scott-Jupp R., Warner J. O., Tanner M. S., Williamson R., Mowat A. P. Genotype analysis for delta F508, G551D and R553X mutations in children and young adults with cystic fibrosis with and without chronic liver disease. Hepatology. 1992 Apr;15(4):660–664. doi: 10.1002/hep.1840150418. [DOI] [PubMed] [Google Scholar]
  39. Döring G., Krogh-Johansen H., Weidinger S., Høiby N. Allotypes of alpha 1-antitrypsin in patients with cystic fibrosis, homozygous and heterozygous for deltaF508. Pediatr Pulmonol. 1994 Jul;18(1):3–7. doi: 10.1002/ppul.1950180104. [DOI] [PubMed] [Google Scholar]
  40. Ferrari M., Colombo C., Sebastio G., Castiglione O., Quattrucci S., Dallapiccola B., Leoni G., Zanda M., Romano L., Devoto M. Cystic fibrosis patients with liver disease are not genetically distinct. Am J Hum Genet. 1991 Apr;48(4):815–816. [PMC free article] [PubMed] [Google Scholar]
  41. Freedman S. D., Blanco P., Shea J. C., Alvarez J. G. Mechanisms to explain pancreatic dysfunction in cystic fibrosis. Med Clin North Am. 2000 May;84(3):657-64, x. doi: 10.1016/s0025-7125(05)70248-0. [DOI] [PubMed] [Google Scholar]
  42. Fulmer S. B., Schwiebert E. M., Morales M. M., Guggino W. B., Cutting G. R. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6832–6836. doi: 10.1073/pnas.92.15.6832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Férec C., Raguénès O., Salomon R., Roche C., Bernard J. P., Guillot M., Quéré I., Faure C., Mercier B., Audrézet M. P. Mutations in the cationic trypsinogen gene and evidence for genetic heterogeneity in hereditary pancreatitis. J Med Genet. 1999 Mar;36(3):228–232. [PMC free article] [PubMed] [Google Scholar]
  44. Gabolde M., Guilloud-Bataille M., Feingold J., Besmond C. Association of variant alleles of mannose binding lectin with severity of pulmonary disease in cystic fibrosis: cohort study. BMJ. 1999 Oct 30;319(7218):1166–1167. doi: 10.1136/bmj.319.7218.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gabolde M., Hubert D., Guilloud-Bataille M., Lenaerts C., Feingold J., Besmond C. The mannose binding lectin gene influences the severity of chronic liver disease in cystic fibrosis. J Med Genet. 2001 May;38(5):310–311. doi: 10.1136/jmg.38.5.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Garred P., Madsen H. O., Balslev U., Hofmann B., Pedersen C., Gerstoft J., Svejgaard A. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet. 1997 Jan 25;349(9047):236–240. doi: 10.1016/S0140-6736(96)08440-1. [DOI] [PubMed] [Google Scholar]
  47. Garred P., Madsen H. O., Hofmann B., Svejgaard A. Increased frequency of homozygosity of abnormal mannan-binding-protein alleles in patients with suspected immunodeficiency. Lancet. 1995 Oct 7;346(8980):941–943. doi: 10.1016/s0140-6736(95)91559-1. [DOI] [PubMed] [Google Scholar]
  48. Garred P., Pressler T., Madsen H. O., Frederiksen B., Svejgaard A., Høiby N., Schwartz M., Koch C. Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest. 1999 Aug;104(4):431–437. doi: 10.1172/JCI6861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Geller D. E., Kaplowitz H., Light M. J., Colin A. A. Allergic bronchopulmonary aspergillosis in cystic fibrosis: reported prevalence, regional distribution, and patient characteristics. Scientific Advisory Group, Investigators, and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Chest. 1999 Sep;116(3):639–646. doi: 10.1378/chest.116.3.639. [DOI] [PubMed] [Google Scholar]
  50. Girodon E., Cazeneuve C., Lebargy F., Chinet T., Costes B., Ghanem N., Martin J., Lemay S., Scheid P., Housset B. CFTR gene mutations in adults with disseminated bronchiectasis. Eur J Hum Genet. 1997 May-Jun;5(3):149–155. [PubMed] [Google Scholar]
  51. Gorry M. C., Gabbaizedeh D., Furey W., Gates L. K., Jr, Preston R. A., Aston C. E., Zhang Y., Ulrich C., Ehrlich G. D., Whitcomb D. C. Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology. 1997 Oct;113(4):1063–1068. doi: 10.1053/gast.1997.v113.pm9322498. [DOI] [PubMed] [Google Scholar]
  52. Grasemann H., Knauer N., Büscher R., Hübner K., Drazen J. M., Ratjen F. Airway nitric oxide levels in cystic fibrosis patients are related to a polymorphism in the neuronal nitric oxide synthase gene. Am J Respir Crit Care Med. 2000 Dec;162(6):2172–2176. doi: 10.1164/ajrccm.162.6.2003106. [DOI] [PubMed] [Google Scholar]
  53. HINSON K. F. W., MOON A. J., PLUMMER N. S. Broncho-pulmonary aspergillosis; a review and a report of eight new cases. Thorax. 1952 Dec;7(4):317–333. doi: 10.1136/thx.7.4.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. HOLSCLAW D. S., ECKSTEIN H. B., NIXON H. H. MECONIUM ILEUS. A 20-YEAR REVIEW OF 109 CASES. Am J Dis Child. 1965 Feb;109:101–113. [PubMed] [Google Scholar]
  55. Haber P. S., Wilson J. S., McGarity B. H., Hall W., Thomas M. C., Pirola R. C. Alpha 1 antitrypsin phenotypes and alcoholic pancreatitis. Gut. 1991 Aug;32(8):945–948. doi: 10.1136/gut.32.8.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Haber P., Wilson J., Apte M., Korsten M., Pirola R. Individual susceptibility to alcoholic pancreatitis: still an enigma. J Lab Clin Med. 1995 Mar;125(3):305–312. [PubMed] [Google Scholar]
  57. Hawgood S., Poulain F. R. The pulmonary collectins and surfactant metabolism. Annu Rev Physiol. 2001;63:495–519. doi: 10.1146/annurev.physiol.63.1.495. [DOI] [PubMed] [Google Scholar]
  58. Heagerty A. H., Fitzgerald D., Smith A., Bowers B., Jones P., Fryer A. A., Zhao L., Alldersea J., Strange R. C. Glutathione S-transferase GSTM1 phenotypes and protection against cutaneous tumours. Lancet. 1994 Jan 29;343(8892):266–268. doi: 10.1016/s0140-6736(94)91115-0. [DOI] [PubMed] [Google Scholar]
  59. Hull J., Thomson A. H. Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax. 1998 Dec;53(12):1018–1021. doi: 10.1136/thx.53.12.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hutchison D. C. Alpha 1-antitrypsin deficiency in Europe: geographical distribution of Pi types S and Z. Respir Med. 1998 Mar;92(3):367–377. doi: 10.1016/s0954-6111(98)90278-5. [DOI] [PubMed] [Google Scholar]
  61. Hytönen M., Patjas M., Vento S. I., Kauppi P., Malmberg H., Ylikoski J., Kere J. Cystic fibrosis gene mutations deltaF508 and 394delTT in patients with chronic sinusitis in Finland. Acta Otolaryngol. 2001 Dec;121(8):945–947. doi: 10.1080/000164801317166835. [DOI] [PubMed] [Google Scholar]
  62. Ignotz R. A., Massagué J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986 Mar 25;261(9):4337–4345. [PubMed] [Google Scholar]
  63. Kaneko K., Nagasaki Y., Furukawa T., Mizutamari H., Sato A., Masamune A., Shimosegawa T., Horii A. Analysis of the human pancreatic secretory trypsin inhibitor (PSTI) gene mutations in Japanese patients with chronic pancreatitis. J Hum Genet. 2001;46(5):293–297. doi: 10.1007/s100380170082. [DOI] [PubMed] [Google Scholar]
  64. Kaplan E., Shwachman H., Perlmutter A. D., Rule A., Khaw K. T., Holsclaw D. S. Reproductive failure in males with cystic fibrosis. N Engl J Med. 1968 Jul 11;279(2):65–69. doi: 10.1056/NEJM196807112790203. [DOI] [PubMed] [Google Scholar]
  65. Keim V., Hoffmeister A., Teich N., Halm U., Scheurlen M., Tannapfel A., Mössner J. The pancreatitis-associated protein in hereditary and chronic alcoholic pancreatitis. Pancreas. 1999 Oct;19(3):248–254. doi: 10.1097/00006676-199910000-00005. [DOI] [PubMed] [Google Scholar]
  66. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  67. Kerem E., Corey M., Kerem B., Durie P., Tsui L. C., Levison H. Clinical and genetic comparisons of patients with cystic fibrosis, with or without meconium ileus. J Pediatr. 1989 May;114(5):767–773. doi: 10.1016/s0022-3476(89)80134-9. [DOI] [PubMed] [Google Scholar]
  68. Kiesewetter S., Macek M., Jr, Davis C., Curristin S. M., Chu C. S., Graham C., Shrimpton A. E., Cashman S. M., Tsui L. C., Mickle J. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet. 1993 Nov;5(3):274–278. doi: 10.1038/ng1193-274. [DOI] [PubMed] [Google Scholar]
  69. Koch C., Cuppens H., Rainisio M., Madessani U., Harms H., Hodson M., Mastella G., Navarro J., Strandvik B., McKenzie S. European Epidemiologic Registry of Cystic Fibrosis (ERCF): comparison of major disease manifestations between patients with different classes of mutations. Pediatr Pulmonol. 2001 Jan;31(1):1–12. doi: 10.1002/1099-0496(200101)31:1<1::aid-ppul1000>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  70. Kristidis P., Bozon D., Corey M., Markiewicz D., Rommens J., Tsui L. C., Durie P. Genetic determination of exocrine pancreatic function in cystic fibrosis. Am J Hum Genet. 1992 Jun;50(6):1178–1184. [PMC free article] [PubMed] [Google Scholar]
  71. Kukor Zoltán, Tóth Miklós, Pál Gábor, Sahin-Tóth Miklós. Human cationic trypsinogen. Arg(117) is the reactive site of an inhibitory surface loop that controls spontaneous zymogen activation. J Biol Chem. 2001 Dec 17;277(8):6111–6117. doi: 10.1074/jbc.M110959200. [DOI] [PubMed] [Google Scholar]
  72. Kuwata K., Hirota M., Sugita H., Kai M., Hayashi N., Nakamura M., Matsuura T., Adachi N., Nishimori I., Ogawa M. Genetic mutations in exons 3 and 4 of the pancreatic secretory trypsin inhibitor in patients with pancreatitis. J Gastroenterol. 2001 Sep;36(9):612–618. doi: 10.1007/s005350170045. [DOI] [PubMed] [Google Scholar]
  73. LASKOWSKI M., WU F. C. Temporary inhibition of trypsin. J Biol Chem. 1953 Oct;204(2):797–805. [PubMed] [Google Scholar]
  74. Lankisch P. G., Koop H., Winckler K., Kaboth U. alpha1-Antitrypsin in pancreatic diseases. Digestion. 1978;18(1-2):138–140. doi: 10.1159/000198194. [DOI] [PubMed] [Google Scholar]
  75. Larsson C. Natural history and life expectancy in severe alpha1-antitrypsin deficiency, Pi Z. Acta Med Scand. 1978;204(5):345–351. doi: 10.1111/j.0954-6820.1978.tb08452.x. [DOI] [PubMed] [Google Scholar]
  76. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  77. Le Bodic L., Bignon J. D., Raguénès O., Mercier B., Georgelin T., Schnee M., Soulard F., Gagne K., Bonneville F., Muller J. Y. The hereditary pancreatitis gene maps to long arm of chromosome 7. Hum Mol Genet. 1996 Apr;5(4):549–554. doi: 10.1093/hmg/5.4.549. [DOI] [PubMed] [Google Scholar]
  78. Le Maréchal C., Bretagne J. F., Raguénès O., Quéré I., Chen J. M., Ferec C. Identification of a novel pancreatitis-associated missense mutation, R116C, in the human cationic trypsinogen gene (PRSS1). Mol Genet Metab. 2001 Nov;74(3):342–344. doi: 10.1006/mgme.2001.3246. [DOI] [PubMed] [Google Scholar]
  79. Le Maréchal C., Chen J. M., Quéré I., Raguénès O., Férec C., Auroux J. Discrimination of three mutational events that result in a disruption of the R122 primary autolysis site of the human cationic trypsinogen (PRSS1) by denaturing high performance liquid chromatography. BMC Genet. 2001 Nov 19;2:19–19. doi: 10.1186/1471-2156-2-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lester L. A., Kraut J., Lloyd-Still J., Karrison T., Mott C., Billstrand C., Lemke A., Ober C. Delta F508 genotype does not predict disease severity in an ethnically diverse cystic fibrosis population. Pediatrics. 1994 Jan;93(1):114–118. [PubMed] [Google Scholar]
  81. Lipscombe R. J., Sumiya M., Hill A. V., Lau Y. L., Levinsky R. J., Summerfield J. A., Turner M. W. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet. 1992 Dec;1(9):709–715. doi: 10.1093/hmg/1.9.709. [DOI] [PubMed] [Google Scholar]
  82. Lázaro C., de Cid R., Sunyer J., Soriano J., Giménez J., Alvarez M., Casals T., Antó J. M., Estivill X. Missense mutations in the cystic fibrosis gene in adult patients with asthma. Hum Mutat. 1999;14(6):510–519. doi: 10.1002/(SICI)1098-1004(199912)14:6<510::AID-HUMU10>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  83. Madsen H. O., Garred P., Kurtzhals J. A., Lamm L. U., Ryder L. P., Thiel S., Svejgaard A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics. 1994;40(1):37–44. doi: 10.1007/BF00163962. [DOI] [PubMed] [Google Scholar]
  84. Madsen H. O., Garred P., Thiel S., Kurtzhals J. A., Lamm L. U., Ryder L. P., Svejgaard A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol. 1995 Sep 15;155(6):3013–3020. [PubMed] [Google Scholar]
  85. Madsen H. O., Satz M. L., Hogh B., Svejgaard A., Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol. 1998 Sep 15;161(6):3169–3175. [PubMed] [Google Scholar]
  86. Mahadeva R., Sharples L., Ross-Russell R. I., Webb A. K., Bilton D., Lomas D. A. Association of alpha(1)-antichymotrypsin deficiency with milder lung disease in patients with cystic fibrosis. Thorax. 2001 Jan;56(1):53–58. doi: 10.1136/thorax.56.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Mahadeva R., Stewart S., Bilton D., Lomas D. A. Alpha-1 antitrypsin deficiency alleles and severe cystic fibrosis lung disease. Thorax. 1998 Dec;53(12):1022–1024. doi: 10.1136/thx.53.12.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Mahadeva R., Westerbeek R. C., Perry D. J., Lovegrove J. U., Whitehouse D. B., Carroll N. R., Ross-Russell R. I., Webb A. K., Bilton D., Lomas D. A. Alpha1-antitrypsin deficiency alleles and the Taq-I G-->A allele in cystic fibrosis lung disease. Eur Respir J. 1998 Apr;11(4):873–879. doi: 10.1183/09031936.98.11040873. [DOI] [PubMed] [Google Scholar]
  89. Marchand E., Verellen-Dumoulin C., Mairesse M., Delaunois L., Brancaleone P., Rahier J. F., Vandenplas O. Frequency of cystic fibrosis transmembrane conductance regulator gene mutations and 5T allele in patients with allergic bronchopulmonary aspergillosis. Chest. 2001 Mar;119(3):762–767. doi: 10.1378/chest.119.3.762. [DOI] [PubMed] [Google Scholar]
  90. Mastella G., Rainisio M., Harms H. K., Hodson M. E., Koch C., Navarro J., Strandvik B., McKenzie S. G. Allergic bronchopulmonary aspergillosis in cystic fibrosis. A European epidemiological study. Epidemiologic Registry of Cystic Fibrosis. Eur Respir J. 2000 Sep;16(3):464–471. doi: 10.1034/j.1399-3003.2000.016003464.x. [DOI] [PubMed] [Google Scholar]
  91. Mathew P., Wyllie R., Caulfield M., Steffen R., Kay M. Chronic pancreatitis in late childhood and adolescence. Clin Pediatr (Phila) 1994 Feb;33(2):88–94. doi: 10.1177/000992289403300205. [DOI] [PubMed] [Google Scholar]
  92. Mennie M., Gilfillan A., Brock D. J., Liston W. A. Heterozygotes for the delta F508 cystic fibrosis allele are not protected against bronchial asthma. Nat Med. 1995 Oct;1(10):978–979. doi: 10.1038/nm1095-978b. [DOI] [PubMed] [Google Scholar]
  93. Mercier B., Verlingue C., Lissens W., Silber S. J., Novelli G., Bonduelle M., Audrézet M. P., Férec C. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet. 1995 Jan;56(1):272–277. [PMC free article] [PubMed] [Google Scholar]
  94. Mickle J. E., Cutting G. R. Genotype-phenotype relationships in cystic fibrosis. Med Clin North Am. 2000 May;84(3):597–607. doi: 10.1016/s0025-7125(05)70243-1. [DOI] [PubMed] [Google Scholar]
  95. Mihas A. A., Hirschowitz B. I. Alpha-antitrypsin and chronic pancreatitis. Lancet. 1976 Nov 6;2(7993):1032–1033. doi: 10.1016/s0140-6736(76)90883-7. [DOI] [PubMed] [Google Scholar]
  96. Miller P. W., Hamosh A., Macek M., Jr, Greenberger P. A., MacLean J., Walden S. M., Slavin R. G., Cutting G. R. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis. Am J Hum Genet. 1996 Jul;59(1):45–51. [PMC free article] [PubMed] [Google Scholar]
  97. Nakamura K., Sarles H., Payan H. Three-dimensional reconstruction of the pancreatic ducts in chronic pancreatitis. Gastroenterology. 1972 May;62(5):942–949. [PubMed] [Google Scholar]
  98. Noone P. G., Zhou Z., Silverman L. M., Jowell P. S., Knowles M. R., Cohn J. A. Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology. 2001 Dec;121(6):1310–1319. doi: 10.1053/gast.2001.29673. [DOI] [PubMed] [Google Scholar]
  99. Norton I. D., Apte M. V., Dixson H., Trent R. J., Haber P. S., Pirola R. C., Wilson J. S. Cystic fibrosis genotypes and alcoholic pancreatitis. J Gastroenterol Hepatol. 1998 May;13(5):496–499. doi: 10.1111/j.1440-1746.1998.tb00675.x. [DOI] [PubMed] [Google Scholar]
  100. Novis B. H., Young G. O., Bank S., Marks I. N. Chronic pancreatitis and alpha-1-antitrypsin. Lancet. 1975 Oct 18;2(7938):748–749. doi: 10.1016/s0140-6736(75)90728-x. [DOI] [PubMed] [Google Scholar]
  101. Ockenga J., Dörk T., Stuhrmann M. Low prevalence of SPINK1 gene mutations in adult patients with chronic idiopathic pancreatitis. J Med Genet. 2001 Apr;38(4):243–244. doi: 10.1136/jmg.38.4.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Pandya A., Blanton S. H., Landa B., Javaheri R., Melvin E., Nance W. E., Markello T. Linkage studies in a large kindred with hereditary pancreatitis confirms mapping of the gene to a 16-cM region on 7q. Genomics. 1996 Dec 1;38(2):227–230. doi: 10.1006/geno.1996.0620. [DOI] [PubMed] [Google Scholar]
  103. Pfützer R. H., Barmada M. M., Brunskill A. P., Finch R., Hart P. S., Neoptolemos J., Furey W. F., Whitcomb D. C. SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology. 2000 Sep;119(3):615–623. doi: 10.1053/gast.2000.18017. [DOI] [PubMed] [Google Scholar]
  104. Pfützer R., Myers E., Applebaum-Shapiro S., Finch R., Ellis I., Neoptolemos J., Kant J. A., Whitcomb D. C. Novel cationic trypsinogen (PRSS1) N29T and R122C mutations cause autosomal dominant hereditary pancreatitis. Gut. 2002 Feb;50(2):271–272. doi: 10.1136/gut.50.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Pignatti P. F., Bombieri C., Benetazzo M., Casartelli A., Trabetti E., Gilè L. S., Martinati L. C., Boner A. L., Luisetti M. CFTR gene variant IVS8-5T in disseminated bronchiectasis. Am J Hum Genet. 1996 Apr;58(4):889–892. [PMC free article] [PubMed] [Google Scholar]
  106. Pignatti P. F., Bombieri C., Marigo C., Benetazzo M., Luisetti M. Increased incidence of cystic fibrosis gene mutations in adults with disseminated bronchiectasis. Hum Mol Genet. 1995 Apr;4(4):635–639. doi: 10.1093/hmg/4.4.635. [DOI] [PubMed] [Google Scholar]
  107. Poller W., Faber J. P., Scholz S., Olek K., Müller K. M. Sequence analysis of the cystic fibrosis gene in patients with disseminated bronchiectatic lung disease. Application in the identification of a cystic fibrosis patient with atypical clinical course. Klin Wochenschr. 1991 Sep 16;69(14):657–663. doi: 10.1007/BF01649427. [DOI] [PubMed] [Google Scholar]
  108. Raman Vidya, Clary Randall, Siegrist Karen L., Zehnbauer Barbara, Chatila Talal A. Increased prevalence of mutations in the cystic fibrosis transmembrane conductance regulator in children with chronic rhinosinusitis. Pediatrics. 2002 Jan;109(1):E13–E13. doi: 10.1542/peds.109.1.e13. [DOI] [PubMed] [Google Scholar]
  109. Rinderknecht H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci. 1986 Mar;31(3):314–321. doi: 10.1007/BF01318124. [DOI] [PubMed] [Google Scholar]
  110. Rinderknecht H., Stace N. H., Renner I. G. Effects of chronic alcohol abuse on exocrine pancreatic secretion in man. Dig Dis Sci. 1985 Jan;30(1):65–71. doi: 10.1007/BF01318373. [DOI] [PubMed] [Google Scholar]
  111. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  112. Riordan J. R. The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol. 1993;55:609–630. doi: 10.1146/annurev.ph.55.030193.003141. [DOI] [PubMed] [Google Scholar]
  113. Rohlfs E. M., Shaheen N. J., Silverman L. M. Is the hemochromatosis gene a modifier locus for cystic fibrosis? Genet Test. 1998;2(1):85–88. doi: 10.1089/gte.1998.2.85. [DOI] [PubMed] [Google Scholar]
  114. Sahin-Tóth M. Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J Biol Chem. 2000 Jul 28;275(30):22750–22755. doi: 10.1074/jbc.M002943200. [DOI] [PubMed] [Google Scholar]
  115. Sahin-Tóth M., Tóth M. Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun. 2000 Nov 19;278(2):286–289. doi: 10.1006/bbrc.2000.3797. [DOI] [PubMed] [Google Scholar]
  116. Sarles H., Adler G., Dani R., Frey C., Gullo L., Harada H., Martin E., Norohna M., Scuro L. A. Classifications of pancreatitis and definition of pancreatic diseases. Digestion. 1989;43(4):234–236. doi: 10.1159/000199882. [DOI] [PubMed] [Google Scholar]
  117. Sarles H., Adler G., Dani R., Frey C., Gullo L., Harada H., Martin E., Norohna M., Scuro L. A. The pancreatitis classification of Marseilles-Rome 1988. Scand J Gastroenterol. 1989 Aug;24(6):641–642. doi: 10.3109/00365528909093102. [DOI] [PubMed] [Google Scholar]
  118. Sarner M., Cotton P. B. Classification of pancreatitis. Gut. 1984 Jul;25(7):756–759. doi: 10.1136/gut.25.7.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Scheele G., Bartelt D., Bieger W. Characterization of human exocrine pancreatic proteins by two-dimensional isoelectric focusing/sodium dodecyl sulfate gel electrophoresis. Gastroenterology. 1981 Mar;80(3):461–473. [PubMed] [Google Scholar]
  120. Schroeder S. A., Gaughan D. M., Swift M. Protection against bronchial asthma by CFTR delta F508 mutation: a heterozygote advantage in cystic fibrosis. Nat Med. 1995 Jul;1(7):703–705. doi: 10.1038/nm0795-703. [DOI] [PubMed] [Google Scholar]
  121. Seidegård J., Vorachek W. R., Pero R. W., Pearson W. R. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7293–7297. doi: 10.1073/pnas.85.19.7293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Shah A., Khan Z. U., Chaturvedi S., Malik G. B., Randhawa H. S. Concomitant allergic Aspergillus sinusitis and allergic bronchopulmonary aspergillosis associated with familial occurrence of allergic bronchopulmonary aspergillosis. Ann Allergy. 1990 Jun;64(6):507–512. [PubMed] [Google Scholar]
  123. Sharer N., Schwarz M., Malone G., Howarth A., Painter J., Super M., Braganza J. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med. 1998 Sep 3;339(10):645–652. doi: 10.1056/NEJM199809033391001. [DOI] [PubMed] [Google Scholar]
  124. Sheppard D. N., Welsh M. J. Structure and function of the CFTR chloride channel. Physiol Rev. 1999 Jan;79(1 Suppl):S23–S45. doi: 10.1152/physrev.1999.79.1.S23. [DOI] [PubMed] [Google Scholar]
  125. Shwachman H., Lebenthal E., Khaw K. T. Recurrent acute pancreatitis in patients with cystic fibrosis with normal pancreatic enzymes. Pediatrics. 1975 Jan;55(1):86–95. [PubMed] [Google Scholar]
  126. Simon Peter, Weiss F. Ulrich, Sahin-Toth Miklos, Parry Marina, Nayler Oliver, Lenfers Berthold, Schnekenburger Jurgen, Mayerle Julia, Domschke Wolfram, Lerch Markus M. Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122 --> Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem. 2001 Nov 21;277(7):5404–5410. doi: 10.1074/jbc.M108073200. [DOI] [PubMed] [Google Scholar]
  127. Simon Peter, Weiss F. Ulrich, Sahin-Toth Miklos, Parry Marina, Nayler Oliver, Lenfers Berthold, Schnekenburger Jurgen, Mayerle Julia, Domschke Wolfram, Lerch Markus M. Hereditary pancreatitis caused by a novel PRSS1 mutation (Arg-122 --> Cys) that alters autoactivation and autodegradation of cationic trypsinogen. J Biol Chem. 2001 Nov 21;277(7):5404–5410. doi: 10.1074/jbc.M108073200. [DOI] [PubMed] [Google Scholar]
  128. Singer M. V., Gyr K., Sarles H. Revised classification of pancreatitis. Report of the Second International Symposium on the Classification of Pancreatitis in Marseille, France, March 28-30, 1984. Gastroenterology. 1985 Sep;89(3):683–685. [PubMed] [Google Scholar]
  129. Starke I. D. Asthma and allergic aspergillosis in monozygotic twins. Br J Dis Chest. 1985 Jul;79(3):295–300. [PubMed] [Google Scholar]
  130. Steer M. L., Meldolesi J. The cell biology of experimental pancreatitis. N Engl J Med. 1987 Jan 15;316(3):144–150. doi: 10.1056/NEJM198701153160306. [DOI] [PubMed] [Google Scholar]
  131. Strange R. C., Faulder C. G., Davis B. A., Hume R., Brown J. A., Cotton W., Hopkinson D. A. The human glutathione S-transferases: studies on the tissue distribution and genetic variation of the GST1, GST2 and GST3 isozymes. Ann Hum Genet. 1984 Jan;48(Pt 1):11–20. doi: 10.1111/j.1469-1809.1984.tb00829.x. [DOI] [PubMed] [Google Scholar]
  132. Strange R. C., Matharoo B., Faulder G. C., Jones P., Cotton W., Elder J. B., Deakin M. The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma. Carcinogenesis. 1991 Jan;12(1):25–28. doi: 10.1093/carcin/12.1.25. [DOI] [PubMed] [Google Scholar]
  133. Strong T. V., Wilkinson D. J., Mansoura M. K., Devor D. C., Henze K., Yang Y., Wilson J. M., Cohn J. A., Dawson D. C., Frizzell R. A. Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance. Hum Mol Genet. 1993 Mar;2(3):225–230. doi: 10.1093/hmg/2.3.225. [DOI] [PubMed] [Google Scholar]
  134. Sumiya M., Super M., Tabona P., Levinsky R. J., Arai T., Turner M. W., Summerfield J. A. Molecular basis of opsonic defect in immunodeficient children. Lancet. 1991 Jun 29;337(8757):1569–1570. doi: 10.1016/0140-6736(91)93263-9. [DOI] [PubMed] [Google Scholar]
  135. Summerfield J. A., Ryder S., Sumiya M., Thursz M., Gorchein A., Monteil M. A., Turner M. W. Mannose binding protein gene mutations associated with unusual and severe infections in adults. Lancet. 1995 Apr 8;345(8954):886–889. doi: 10.1016/s0140-6736(95)90009-8. [DOI] [PubMed] [Google Scholar]
  136. Szilágyi L., Kénesi E., Katona G., Kaslik G., Juhász G., Gráf L. Comparative in vitro studies on native and recombinant human cationic trypsins. Cathepsin B is a possible pathological activator of trypsinogen in pancreatitis. J Biol Chem. 2001 Apr 18;276(27):24574–24580. doi: 10.1074/jbc.M011374200. [DOI] [PubMed] [Google Scholar]
  137. Tautermann G., Ruebsamen H., Beck M., Dertinger S., Drexel H., Lohse P. R116C mutation of cationic trypsinogen in a Turkish family with recurrent pancreatitis illustrates genetic microheterogeneity of hereditary pancreatitis. Digestion. 2001;64(4):226–232. doi: 10.1159/000048866. [DOI] [PubMed] [Google Scholar]
  138. Teich N., Mössner J., Keim V. Mutations of the cationic trypsinogen in hereditary pancreatitis. Hum Mutat. 1998;12(1):39–43. doi: 10.1002/(SICI)1098-1004(1998)12:1<39::AID-HUMU6>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  139. Teich N., Mössner J., Keim V. Screening for mutations of the cationic trypsinogen gene: are they of relevance in chronic alcoholic pancreatitis? Gut. 1999 Mar;44(3):413–416. doi: 10.1136/gut.44.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Teich N., Ockenga J., Hoffmeister A., Manns M., Mössner J., Keim V. Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation. Gastroenterology. 2000 Aug;119(2):461–465. doi: 10.1053/gast.2000.9312. [DOI] [PubMed] [Google Scholar]
  141. Teich N., Walther K., Bödeker H., Mössner J., Keim V. Relevance of variants in serum antiproteinases for the course of chronic pancreatitis. Scand J Gastroenterol. 2002 Mar;37(3):360–365. doi: 10.1080/003655202317284291. [DOI] [PubMed] [Google Scholar]
  142. Teich Niels, Bauer Nadine, Mössner Joachim, Keim Volker. Mutational screening of patients with nonalcoholic chronic pancreatitis: identification of further trypsinogen variants. Am J Gastroenterol. 2002 Feb;97(2):341–346. doi: 10.1111/j.1572-0241.2002.05467.x. [DOI] [PubMed] [Google Scholar]
  143. Threadgold J., Greenhalf W., Ellis I., Howes N., Lerch M. M., Simon P., Jansen J., Charnley R., Laugier R., Frulloni L. The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut. 2002 May;50(5):675–681. doi: 10.1136/gut.50.5.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Tzetis M., Efthymiadou A., Strofalis S., Psychou P., Dimakou A., Pouliou E., Doudounakis S., Kanavakis E. CFTR gene mutations--including three novel nucleotide substitutions--and haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease. Hum Genet. 2001 Mar;108(3):216–221. doi: 10.1007/s004390100467. [DOI] [PubMed] [Google Scholar]
  145. Wang X., Moylan B., Leopold D. A., Kim J., Rubenstein R. C., Togias A., Proud D., Zeitlin P. L., Cutting G. R. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA. 2000 Oct 11;284(14):1814–1819. doi: 10.1001/jama.284.14.1814. [DOI] [PubMed] [Google Scholar]
  146. Waters D. L., Dorney S. F., Gruca M. A., Martin H. C., Howman-Giles R., Kan A. E., De Silva M., Gaskin K. J. Hepatobiliary disease in cystic fibrosis patients with pancreatic sufficiency. Hepatology. 1995 Apr;21(4):963–969. [PubMed] [Google Scholar]
  147. Welsh M. J., Smith A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993 Jul 2;73(7):1251–1254. doi: 10.1016/0092-8674(93)90353-r. [DOI] [PubMed] [Google Scholar]
  148. Whitcomb D. C., Gorry M. C., Preston R. A., Furey W., Sossenheimer M. J., Ulrich C. D., Martin S. P., Gates L. K., Jr, Amann S. T., Toskes P. P. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996 Oct;14(2):141–145. doi: 10.1038/ng1096-141. [DOI] [PubMed] [Google Scholar]
  149. Whitcomb D. C., Preston R. A., Aston C. E., Sossenheimer M. J., Barua P. S., Zhang Y., Wong-Chong A., White G. J., Wood P. G., Gates L. K., Jr A gene for hereditary pancreatitis maps to chromosome 7q35. Gastroenterology. 1996 Jun;110(6):1975–1980. doi: 10.1053/gast.1996.v110.pm8964426. [DOI] [PubMed] [Google Scholar]
  150. Wilschanski M., Rivlin J., Cohen S., Augarten A., Blau H., Aviram M., Bentur L., Springer C., Vila Y., Branski D. Clinical and genetic risk factors for cystic fibrosis-related liver disease. Pediatrics. 1999 Jan;103(1):52–57. doi: 10.1542/peds.103.1.52. [DOI] [PubMed] [Google Scholar]
  151. Wilschanski M., Zielenski J., Markiewicz D., Tsui L. C., Corey M., Levison H., Durie P. R. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr. 1995 Nov;127(5):705–710. doi: 10.1016/s0022-3476(95)70157-5. [DOI] [PubMed] [Google Scholar]
  152. Wilson A. G., Symons J. A., McDowell T. L., McDevitt H. O., Duff G. W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3195–3199. doi: 10.1073/pnas.94.7.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Witt H., Hennies H. C., Becker M. SPINK1 mutations in chronic pancreatitis. Gastroenterology. 2001 Mar;120(4):1060–1061. doi: 10.1053/gast.2001.23086. [DOI] [PubMed] [Google Scholar]
  154. Witt H., Kage A., Luck W., Becker M. Alpha1-antitrypsin genotypes in patients with chronic pancreatitis. Scand J Gastroenterol. 2002 Mar;37(3):356–359. doi: 10.1080/003655202317284282. [DOI] [PubMed] [Google Scholar]
  155. Witt H., Luck W., Becker M. A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology. 1999 Jul;117(1):7–10. doi: 10.1016/s0016-5085(99)70543-3. [DOI] [PubMed] [Google Scholar]
  156. Witt H., Luck W., Becker M., Böhmig M., Kage A., Truninger K., Ammann R. W., O'Reilly D., Kingsnorth A., Schulz H. U. Mutation in the SPINK1 trypsin inhibitor gene, alcohol use, and chronic pancreatitis. JAMA. 2001 Jun 6;285(21):2716–2717. doi: 10.1001/jama.285.21.2716-a. [DOI] [PubMed] [Google Scholar]
  157. Witt H., Luck W., Hennies H. C., Classen M., Kage A., Lass U., Landt O., Becker M. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000 Jun;25(2):213–216. doi: 10.1038/76088. [DOI] [PubMed] [Google Scholar]
  158. Zielenski J., Corey M., Rozmahel R., Markiewicz D., Aznarez I., Casals T., Larriba S., Mercier B., Cutting G. R., Krebsova A. Detection of a cystic fibrosis modifier locus for meconium ileus on human chromosome 19q13. Nat Genet. 1999 Jun;22(2):128–129. doi: 10.1038/9635. [DOI] [PubMed] [Google Scholar]
  159. Zielenski J., Patrizio P., Corey M., Handelin B., Markiewicz D., Asch R., Tsui L. C. CFTR gene variant for patients with congenital absence of vas deferens. Am J Hum Genet. 1995 Oct;57(4):958–960. [PMC free article] [PubMed] [Google Scholar]
  160. Zielenski J., Rozmahel R., Bozon D., Kerem B., Grzelczak Z., Riordan J. R., Rommens J., Tsui L. C. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):214–228. doi: 10.1016/0888-7543(91)90503-7. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES