Abstract
Molecular imaging, the science that combines non-invasive in vivo imaging and molecular biology, has begun to use labelled oligonucleotides as radiotracers. Antisense oligonucleotides target gene expression at the RNA level, while aptamer oligonucleotides are designed to hit proteins of interest. Oligonucleotides for imaging cover a large range of applications, from the invention of new contrast agents for diagnosis to exquisite research tools for the development of new drugs.
Full Text
The Full Text of this article is available as a PDF (224.9 KB).
Figure 1.
Antisense oligonucleotides bind to the complementary sequence of the RNA and block its transcription into a protein.
Figure 2.
Principle of SELEX, the selection-amplification cycle to obtain oligonucleotide ligands (aptamers) against a designed target.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboagye E. O., Price P. M., Jones T. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov Today. 2001 Mar 1;6(6):293–302. doi: 10.1016/s1359-6446(01)01684-1. [DOI] [PubMed] [Google Scholar]
- Agarwal N., Gewirtz A. M. Oligonucleotide therapeutics for hematologic disorders. Biochim Biophys Acta. 1999 Dec 10;1489(1):85–96. doi: 10.1016/s0167-4781(99)00142-6. [DOI] [PubMed] [Google Scholar]
- Agrawal S., Tang J. Y., Brown D. M. Analytical study of phosphorothioate analogues of oligodeoxynucleotides using high-performance liquid chromatography. J Chromatogr. 1990 Jun 22;509(2):396–399. doi: 10.1016/s0021-9673(01)93098-5. [DOI] [PubMed] [Google Scholar]
- Agrawal S., Zhang X., Lu Z., Zhao H., Tamburin J. M., Yan J., Cai H., Diasio R. B., Habus I., Jiang Z. Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem Pharmacol. 1995 Aug 8;50(4):571–576. doi: 10.1016/0006-2952(95)00160-2. [DOI] [PubMed] [Google Scholar]
- Akhtar S., Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci. 1997 Jan;18(1):12–18. doi: 10.1016/s0165-6147(96)01002-4. [DOI] [PubMed] [Google Scholar]
- Andrews D. W., Resnicoff M., Flanders A. E., Kenyon L., Curtis M., Merli G., Baserga R., Iliakis G., Aiken R. D. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol. 2001 Apr 15;19(8):2189–2200. doi: 10.1200/JCO.2001.19.8.2189. [DOI] [PubMed] [Google Scholar]
- Aurup H., Williams D. M., Eckstein F. 2'-Fluoro- and 2'-amino-2'-deoxynucleoside 5'-triphosphates as substrates for T7 RNA polymerase. Biochemistry. 1992 Oct 13;31(40):9636–9641. doi: 10.1021/bi00155a016. [DOI] [PubMed] [Google Scholar]
- Belikova A. M., Zarytova V. F., Grineva N. I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 1967 Sep;37:3557–3562. doi: 10.1016/s0040-4039(01)89794-x. [DOI] [PubMed] [Google Scholar]
- Benimetskaya L., Tonkinson J. L., Koziolkiewicz M., Karwowski B., Guga P., Zeltser R., Stec W., Stein C. A. Binding of phosphorothioate oligodeoxynucleotides to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin is P-chirality independent. Nucleic Acids Res. 1995 Nov 11;23(21):4239–4245. doi: 10.1093/nar/23.21.4239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchini M., Radrizzani M., Brocardo M. G., Reyes G. B., Gonzalez Solveyra C., Santa-Coloma T. A. Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J Immunol Methods. 2001 Jun 1;252(1-2):191–197. doi: 10.1016/s0022-1759(01)00350-7. [DOI] [PubMed] [Google Scholar]
- Bishop M. R., Iversen P. L., Bayever E., Sharp J. G., Greiner T. C., Copple B. L., Ruddon R., Zon G., Spinolo J., Arneson M. Phase I trial of an antisense oligonucleotide OL(1)p53 in hematologic malignancies. J Clin Oncol. 1996 Apr;14(4):1320–1326. doi: 10.1200/JCO.1996.14.4.1320. [DOI] [PubMed] [Google Scholar]
- Blank M., Weinschenk T., Priemer M., Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001 Feb 13;276(19):16464–16468. doi: 10.1074/jbc.M100347200. [DOI] [PubMed] [Google Scholar]
- Brody E. N., Gold L. Aptamers as therapeutic and diagnostic agents. J Biotechnol. 2000 Mar;74(1):5–13. doi: 10.1016/s1389-0352(99)00004-5. [DOI] [PubMed] [Google Scholar]
- Charlton J., Sennello J., Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997 Nov;4(11):809–816. doi: 10.1016/s1074-5521(97)90114-9. [DOI] [PubMed] [Google Scholar]
- Chen T. L., Miller P. S., Ts'o P. O., Colvin O. M., Chem T. L. Disposition and metabolism of oligodeoxynucleoside methylphosphonate following a single i.v. injection in mice. Drug Metab Dispos. 1990 Sep-Oct;18(5):815–818. [PubMed] [Google Scholar]
- Conrad R., Keranen L. M., Ellington A. D., Newton A. C. Isozyme-specific inhibition of protein kinase C by RNA aptamers. J Biol Chem. 1994 Dec 23;269(51):32051–32054. [PubMed] [Google Scholar]
- Cotter F. E., Johnson P., Hall P., Pocock C., al Mahdi N., Cowell J. K., Morgan G. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene. 1994 Oct;9(10):3049–3055. [PubMed] [Google Scholar]
- Crooke S. T. Evaluating the mechanism of action of antiproliferative antisense drugs. Antisense Nucleic Acid Drug Dev. 2000 Apr;10(2):123–127. doi: 10.1089/oli.1.2000.10.123. [DOI] [PubMed] [Google Scholar]
- DeLong R. K., Nolting A., Fisher M., Chen Q., Wickstrom E., Kligshteyn M., Demirdji S., Caruthers M., Juliano R. L. Comparative pharmacokinetics, tissue distribution, and tumor accumulation of phosphorothioate, phosphorodithioate, and methylphosphonate oligonucleotides in nude mice. Antisense Nucleic Acid Drug Dev. 1997 Apr;7(2):71–77. doi: 10.1089/oli.1.1997.7.71. [DOI] [PubMed] [Google Scholar]
- Derossi D., Chassaing G., Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 1998 Feb;8(2):84–87. [PubMed] [Google Scholar]
- Deverre J. R., Boutet V., Boquet D., Ezan E., Grassi J., Grognet J. M. A competitive enzyme hybridization assay for plasma determination of phosphodiester and phosphorothioate antisense oligonucleotides. Nucleic Acids Res. 1997 Sep 15;25(18):3584–3589. doi: 10.1093/nar/25.18.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doudna J. A., Cech T. R., Sullenger B. A. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2355–2359. doi: 10.1073/pnas.92.6.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton B. E. The joys of in vitro selection: chemically dressing oligonucleotides to satiate protein targets. Curr Opin Chem Biol. 1997 Jun;1(1):10–16. doi: 10.1016/s1367-5931(97)80103-2. [DOI] [PubMed] [Google Scholar]
- Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
- Elbashir S. M., Lendeckel W., Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001 Jan 15;15(2):188–200. doi: 10.1101/gad.862301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
- Famulok M., Jenne A. Oligonucleotide libraries--variatio delectat. Curr Opin Chem Biol. 1998 Jun;2(3):320–327. doi: 10.1016/s1367-5931(98)80004-5. [DOI] [PubMed] [Google Scholar]
- Faria M., Spiller D. G., Dubertret C., Nelson J. S., White M. R., Scherman D., Hélène C., Giovannangeli C. Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo. Nat Biotechnol. 2001 Jan;19(1):40–44. doi: 10.1038/83489. [DOI] [PubMed] [Google Scholar]
- Felgner P. L., Barenholz Y., Behr J. P., Cheng S. H., Cullis P., Huang L., Jessee J. A., Seymour L., Szoka F., Thierry A. R. Nomenclature for synthetic gene delivery systems. Hum Gene Ther. 1997 Mar 20;8(5):511–512. doi: 10.1089/hum.1997.8.5-511. [DOI] [PubMed] [Google Scholar]
- Floege J., Ostendorf T., Janssen U., Burg M., Radeke H. H., Vargeese C., Gill S. C., Green L. S., Janjić N. Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol. 1999 Jan;154(1):169–179. doi: 10.1016/S0002-9440(10)65263-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geselowitz D. A., Neckers L. M. Analysis of oligonucleotide binding, internalization, and intracellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res Dev. 1992 Spring;2(1):17–25. doi: 10.1089/ard.1992.2.17. [DOI] [PubMed] [Google Scholar]
- Geselowitz D. A., Neckers L. M. Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. Antisense Res Dev. 1995 Fall;5(3):213–217. doi: 10.1089/ard.1995.5.213. [DOI] [PubMed] [Google Scholar]
- Giles R. V., Tidd D. M. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res. 1992 Feb 25;20(4):763–770. doi: 10.1093/nar/20.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold L. Oligonucleotides as research, diagnostic, and therapeutic agents. J Biol Chem. 1995 Jun 9;270(23):13581–13584. doi: 10.1074/jbc.270.23.13581. [DOI] [PubMed] [Google Scholar]
- Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
- Hawley P., Gibson I. Interaction of oligodeoxynucleotides with mammalian cells. Antisense Nucleic Acid Drug Dev. 1996 Fall;6(3):185–195. doi: 10.1089/oli.1.1996.6.185. [DOI] [PubMed] [Google Scholar]
- Henry S. P., Novotny W., Leeds J., Auletta C., Kornbrust D. J. Inhibition of coagulation by a phosphorothioate oligonucleotide. Antisense Nucleic Acid Drug Dev. 1997 Oct;7(5):503–510. doi: 10.1089/oli.1.1997.7.503. [DOI] [PubMed] [Google Scholar]
- Hesselberth J., Robertson M. P., Jhaveri S., Ellington A. D. In vitro selection of nucleic acids for diagnostic applications. J Biotechnol. 2000 Mar;74(1):15–25. doi: 10.1016/s1389-0352(99)00005-7. [DOI] [PubMed] [Google Scholar]
- Hicke B. J., Marion C., Chang Y. F., Gould T., Lynott C. K., Parma D., Schmidt P. G., Warren S. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem. 2001 Oct 4;276(52):48644–48654. doi: 10.1074/jbc.M104651200. [DOI] [PubMed] [Google Scholar]
- Hicke B. J., Stephens A. W. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest. 2000 Oct;106(8):923–928. doi: 10.1172/JCI11324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hnatowich D. J. Changing focus: applying antisense to nuclear medicine imaging. Mol Med Today. 1999 Apr;5(4):151–151. doi: 10.1016/s1357-4310(99)01449-5. [DOI] [PubMed] [Google Scholar]
- Hogrefe R. I. An antisense oligonucleotide primer. Antisense Nucleic Acid Drug Dev. 1999 Aug;9(4):351–357. doi: 10.1089/oli.1.1999.9.351. [DOI] [PubMed] [Google Scholar]
- Hélène C. The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des. 1991 Dec;6(6):569–584. [PubMed] [Google Scholar]
- Iribarren A. M., Cicero D. O., Neuner P. J. Resistance to degradation by nucleases of (2'S)-2'-deoxy-2'-C-methyloligonucleotides, novel potential antisense probes. Antisense Res Dev. 1994 Summer;4(2):95–98. doi: 10.1089/ard.1994.4.95. [DOI] [PubMed] [Google Scholar]
- Jansen B., Schlagbauer-Wadl H., Brown B. D., Bryan R. N., van Elsas A., Müller M., Wolff K., Eichler H. G., Pehamberger H. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med. 1998 Feb;4(2):232–234. doi: 10.1038/nm0298-232. [DOI] [PubMed] [Google Scholar]
- Jansen B., Wacheck V., Heere-Ress E., Schlagbauer-Wadl H., Hoeller C., Lucas T., Hoermann M., Hollenstein U., Wolff K., Pehamberger H. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet. 2000 Nov 18;356(9243):1728–1733. doi: 10.1016/S0140-6736(00)03207-4. [DOI] [PubMed] [Google Scholar]
- Jayasena S. D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999 Sep;45(9):1628–1650. [PubMed] [Google Scholar]
- Jhaveri S., Rajendran M., Ellington A. D. In vitro selection of signaling aptamers. Nat Biotechnol. 2000 Dec;18(12):1293–1297. doi: 10.1038/82414. [DOI] [PubMed] [Google Scholar]
- Jones T. The imaging science of positron emission tomography. Eur J Nucl Med. 1996 Jul;23(7):807–813. doi: 10.1007/BF00843711. [DOI] [PubMed] [Google Scholar]
- Kawasaki A. M., Casper M. D., Freier S. M., Lesnik E. A., Zounes M. C., Cummins L. L., Gonzalez C., Cook P. D. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993 Apr 2;36(7):831–841. doi: 10.1021/jm00059a007. [DOI] [PubMed] [Google Scholar]
- Kedzierski W., Porter J. C. Quantitative study of tyrosine hydroxylase mRNA in catecholaminergic neurons and adrenals during development and aging. Brain Res Mol Brain Res. 1990 Jan;7(1):45–51. doi: 10.1016/0169-328x(90)90072-l. [DOI] [PubMed] [Google Scholar]
- Kimoto Michiko, Shirouzu Mikako, Mizutani Shin, Koide Hiroshi, Kaziro Yoshito, Hirao Ichiro, Yokoyama Shigeyuki. Anti-(Raf-1) RNA aptamers that inhibit Ras-induced Raf-1 activation. Eur J Biochem. 2002 Jan;269(2):697–704. doi: 10.1046/j.0014-2956.2001.02703.x. [DOI] [PubMed] [Google Scholar]
- Kühnast B., Dollé F., Terrazzino S., Rousseau B., Loc'h C., Vaufrey F., Hinnen F., Doignon I., Pillon F., David C. General method to label antisense oligonucleotides with radioactive halogens for pharmacological and imaging studies. Bioconjug Chem. 2000 Sep-Oct;11(5):627–636. doi: 10.1021/bc990183i. [DOI] [PubMed] [Google Scholar]
- Larrouy B., Blonski C., Boiziau C., Stuer M., Moreau S., Shire D., Toulmé J. J. RNase H-mediated inhibition of translation by antisense oligodeoxyribonucleotides: use of backbone modification to improve specificity. Gene. 1992 Nov 16;121(2):189–194. doi: 10.1016/0378-1119(92)90121-5. [DOI] [PubMed] [Google Scholar]
- Lavigne C., Thierry A. R. Enhanced antisense inhibition of human immunodeficiency virus type 1 in cell cultures by DLS delivery system. Biochem Biophys Res Commun. 1997 Aug 28;237(3):566–571. doi: 10.1006/bbrc.1997.7191. [DOI] [PubMed] [Google Scholar]
- Lee Nan Sook, Dohjima Taikoh, Bauer Gerhard, Li Haitang, Li Ming-Jie, Ehsani Ali, Salvaterra Paul, Rossi John. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002 May;20(5):500–505. doi: 10.1038/nbt0502-500. [DOI] [PubMed] [Google Scholar]
- Lewis David L., Hagstrom James E., Loomis Aaron G., Wolff Jon A., Herweijer Hans. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet. 2002 Jul 29;32(1):107–108. doi: 10.1038/ng944. [DOI] [PubMed] [Google Scholar]
- McCaffrey Anton P., Meuse Leonard, Pham Thu-Thao T., Conklin Douglas S., Hannon Gregory J., Kay Mark A. RNA interference in adult mice. Nature. 2002 Jul 4;418(6893):38–39. doi: 10.1038/418038a. [DOI] [PubMed] [Google Scholar]
- Miller P. S. Oligonucleoside methylphosphonates as antisense reagents. Biotechnology (N Y) 1991 Apr;9(4):358–362. doi: 10.1038/nbt0491-358. [DOI] [PubMed] [Google Scholar]
- Miyashita T., Reed J. C. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood. 1993 Jan 1;81(1):151–157. [PubMed] [Google Scholar]
- Miyashita T., Reed J. C. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood. 1993 Jan 1;81(1):151–157. [PubMed] [Google Scholar]
- Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
- Morris K. N., Jensen K. B., Julin C. M., Weil M., Gold L. High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2902–2907. doi: 10.1073/pnas.95.6.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moulds C., Lewis J. G., Froehler B. C., Grant D., Huang T., Milligan J. F., Matteucci M. D., Wagner R. W. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry. 1995 Apr 18;34(15):5044–5053. doi: 10.1021/bi00015a015. [DOI] [PubMed] [Google Scholar]
- Nielsen P. E., Egholm M., Buchardt O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem. 1994 Jan-Feb;5(1):3–7. doi: 10.1021/bc00025a001. [DOI] [PubMed] [Google Scholar]
- Osborne S. E., Matsumura I., Ellington A. D. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol. 1997 Jun;1(1):5–9. doi: 10.1016/s1367-5931(97)80102-0. [DOI] [PubMed] [Google Scholar]
- Osborne Scott E., Ellington Andrew D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev. 1997 Apr 1;97(2):349–370. doi: 10.1021/cr960009c. [DOI] [PubMed] [Google Scholar]
- Ostendorf T., Kunter U., Gröne H. J., Bahlmann F., Kawachi H., Shimizu F., Koch K. M., Janjic N., Floege J. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol. 2001 May;12(5):909–918. doi: 10.1681/ASN.V125909. [DOI] [PubMed] [Google Scholar]
- Panyutin I. G., Winters T. A., Feinendegen L. E., Neumann R. D. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy. Q J Nucl Med. 2000 Sep;44(3):256–267. [PubMed] [Google Scholar]
- Paul Cynthia P., Good Paul D., Winer Ira, Engelke David R. Effective expression of small interfering RNA in human cells. Nat Biotechnol. 2002 May;20(5):505–508. doi: 10.1038/nbt0502-505. [DOI] [PubMed] [Google Scholar]
- Pietras K., Ostman A., Sjöquist M., Buchdunger E., Reed R. K., Heldin C. H., Rubin K. Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 2001 Apr 1;61(7):2929–2934. [PubMed] [Google Scholar]
- Piwnica-Worms D. Making sense out of anti-sense: challenges of imaging gene translation with radiolabeled oligonucleotides. J Nucl Med. 1994 Jun;35(6):1064–1066. [PubMed] [Google Scholar]
- Prochiantz A. Peptide nucleic acid smugglers. Nat Biotechnol. 1998 Sep;16(9):819–820. doi: 10.1038/nbt0998-819. [DOI] [PubMed] [Google Scholar]
- Ratajczak M. Z., Hijiya N., Catani L., DeRiel K., Luger S. M., McGlave P., Gewirtz A. M. Acute- and chronic-phase chronic myelogenous leukemia colony-forming units are highly sensitive to the growth inhibitory effects of c-myb antisense oligodeoxynucleotides. Blood. 1992 Apr 15;79(8):1956–1961. [PubMed] [Google Scholar]
- Ratajczak M. Z., Kant J. A., Luger S. M., Hijiya N., Zhang J., Zon G., Gewirtz A. M. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11823–11827. doi: 10.1073/pnas.89.24.11823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruckman J., Green L. S., Beeson J., Waugh S., Gillette W. L., Henninger D. D., Claesson-Welsh L., Janjić N. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem. 1998 Aug 7;273(32):20556–20567. doi: 10.1074/jbc.273.32.20556. [DOI] [PubMed] [Google Scholar]
- Sanghvi Y. S., Hoke G. D., Freier S. M., Zounes M. C., Gonzalez C., Cummins L., Sasmor H., Cook P. D. Antisense oligodeoxynucleotides: synthesis, biophysical and biological evaluation of oligodeoxynucleotides containing modified pyrimidines. Nucleic Acids Res. 1993 Jul 11;21(14):3197–3203. doi: 10.1093/nar/21.14.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedelnikova O. A., Karamychev V. N., Panyutin I. G., Neumann R. D. Sequence-specific gene cleavage in intact mammalian cells by 125I-labeled triplex-forming oligonucleotides conjugated with nuclear localization signal peptide. Antisense Nucleic Acid Drug Dev. 2002 Feb;12(1):43–49. doi: 10.1089/108729002753670256. [DOI] [PubMed] [Google Scholar]
- Sethi Shneh, Lipford Grayson, Wagner Hermann, Kretzschmar Hans. Postexposure prophylaxis against prion disease with a stimulator of innate immunity. Lancet. 2002 Jul 20;360(9328):229–230. doi: 10.1016/S0140-6736(02)09513-2. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. K., Tewary H. K., Iversen P. L. Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev. 1995 Summer;5(2):131–139. doi: 10.1089/ard.1995.5.131. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. K., Tewary H. K., Iversen P. L. Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev. 1995 Summer;5(2):131–139. doi: 10.1089/ard.1995.5.131. [DOI] [PubMed] [Google Scholar]
- Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
- Stein C. A. Keeping the biotechnology of antisense in context. Nat Biotechnol. 1999 Mar;17(3):209–209. doi: 10.1038/6909. [DOI] [PubMed] [Google Scholar]
- Stein C. A. Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends Biotechnol. 1996 May;14(5):147–149. doi: 10.1016/0167-7799(96)20006-X. [DOI] [PubMed] [Google Scholar]
- Stein D., Foster E., Huang S. B., Weller D., Summerton J. A specificity comparison of four antisense types: morpholino, 2'-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev. 1997 Jun;7(3):151–157. doi: 10.1089/oli.1.1997.7.151. [DOI] [PubMed] [Google Scholar]
- Stephenson M. L., Zamecnik P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A. 1978 Jan;75(1):285–288. doi: 10.1073/pnas.75.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun S. Technology evaluation: SELEX, Gilead Sciences Inc. Curr Opin Mol Ther. 2000 Feb;2(1):100–105. [PubMed] [Google Scholar]
- Tavitian B., Terrazzino S., Kühnast B., Marzabal S., Stettler O., Dollé F., Deverre J. R., Jobert A., Hinnen F., Bendriem B. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med. 1998 Apr;4(4):467–471. doi: 10.1038/nm0498-467. [DOI] [PubMed] [Google Scholar]
- Tavitian Bertrand, Marzabal Stéphane, Boutet Valérie, Kühnast Bertrand, Terrazzino Salvatore, Moynier Marinette, Dollé Frédéric, Deverre Jean Robert, Thierry Alain R. Characterization of a synthetic anionic vector for oligonucleotide delivery using in vivo whole body dynamic imaging. Pharm Res. 2002 Apr;19(4):367–376. doi: 10.1023/a:1015133205457. [DOI] [PubMed] [Google Scholar]
- Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
- Tuschl T. RNA interference and small interfering RNAs. Chembiochem. 2001 Apr 2;2(4):239–245. doi: 10.1002/1439-7633(20010401)2:4<239::AID-CBIC239>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Usman N., Blatt L. M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest. 2000 Nov;106(10):1197–1202. doi: 10.1172/JCI11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R. R., Sullenger B. A., Rusconi C. P. Developing aptamers into therapeutics. J Clin Invest. 2000 Oct;106(8):929–934. doi: 10.1172/JCI11325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilbur D. S., Hadley S. W., Hylarides M. D., Abrams P. G., Beaumier P. A., Morgan A. C., Reno J. M., Fritzberg A. R. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med. 1989 Feb;30(2):216–226. [PubMed] [Google Scholar]
- Willis M. C., Collins B. D., Zhang T., Green L. S., Sebesta D. P., Bell C., Kellogg E., Gill S. C., Magallanez A., Knauer S. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem. 1998 Sep-Oct;9(5):573–582. doi: 10.1021/bc980002x. [DOI] [PubMed] [Google Scholar]
- Wilson D. S., Szostak J. W. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68:611–647. doi: 10.1146/annurev.biochem.68.1.611. [DOI] [PubMed] [Google Scholar]
- Wlotzka Britta, Leva Susanne, Eschgfäller Bernd, Burmeister Jens, Kleinjung Frank, Kaduk Christine, Muhn Peter, Hess-Stumpp Holger, Klussmann Sven. In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci U S A. 2002 Jun 17;99(13):8898–8902. doi: 10.1073/pnas.132067399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yakubov L. A., Deeva E. A., Zarytova V. F., Ivanova E. M., Ryte A. S., Yurchenko L. V., Vlassov V. V. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci U S A. 1989 Sep;86(17):6454–6458. doi: 10.1073/pnas.86.17.6454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Younes Cheraz Khélifi, Boisgard Raphaël, Tavitian Bertrand. Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des. 2002;8(16):1451–1466. doi: 10.2174/1381612023394467. [DOI] [PubMed] [Google Scholar]
- Zhang Y. M., Liu N., Zhu Z. H., Rusckowski M., Hnatowich D. J. Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med. 2000 Nov;27(11):1700–1707. doi: 10.1007/s002590000343. [DOI] [PubMed] [Google Scholar]
- Zhang Y. M., Wang Y., Liu N., Zhu Z. H., Rusckowski M., Hnatowich D. J. In vitro investigations of tumor targeting with (99m)Tc-labeled antisense DNA. J Nucl Med. 2001 Nov;42(11):1660–1669. [PubMed] [Google Scholar]
- Zhao Q., Matson S., Herrera C. J., Fisher E., Yu H., Krieg A. M. Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res Dev. 1993 Spring;3(1):53–66. doi: 10.1089/ard.1993.3.53. [DOI] [PubMed] [Google Scholar]
- de Fabritiis P., Petti M. C., Montefusco E., De Propris M. S., Sala R., Bellucci R., Mancini M., Lisci A., Bonetto F., Geiser T. BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood. 1998 May 1;91(9):3156–3162. [PubMed] [Google Scholar]