Skip to main content
Gut logoLink to Gut
. 2003 Jun;52(Suppl 4):iv1–iv6. doi: 10.1136/gut.52.suppl_4.iv1

Tissue and cell imaging in situ: potential for applications in pathology and endoscopy

J Scoazec
PMCID: PMC1867764  PMID: 12746261

Abstract

Morphological sciences have recently experienced a significant technological breakthrough that offers new opportunities for cell and tissue imaging in situ but also raises new challenges to pathologists, who must adapt to a rapidly evolving environment. New partners, such as cell and molecular biologists, have provided pathologists with highly powerful tools for cell and subcellular imaging. They include: (a) the adaptation of techniques derived from molecular biology and cytogenetics, (b) the development of new microscopic tools, such as confocal microscopy, and (c) the emergence of new preparative techniques, such as microdissection or tissue arrays. However, recent technological progresses in various fields, from endoscopy to genomics, also raise new challenges to pathologists. Pathologists must therefore be prepared to redefine their area of expertise: this will be achieved through a continuous collaboration with all the partners involved in cell and tissue imaging and analysis but also by emphasising the importance of the informations provided by cell and tissue imaging in situ.

Full Text

The Full Text of this article is available as a PDF (97.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. M., Petroll W. M., Cavanagh H. D., Jester J. V. Tandem scanning confocal microscopy (TSCM) of normal and ischemic living kidneys. Am J Anat. 1991 May;191(1):95–102. doi: 10.1002/aja.1001910110. [DOI] [PubMed] [Google Scholar]
  2. Best C. J., Emmert-Buck M. R. Molecular profiling of tissue samples using laser capture microdissection. Expert Rev Mol Diagn. 2001 May;1(1):53–60. doi: 10.1586/14737159.1.1.53. [DOI] [PubMed] [Google Scholar]
  3. Bodey Bela. The significance of immunohistochemistry in the diagnosis and therapy of neoplasms. Expert Opin Biol Ther. 2002 Apr;2(4):371–393. doi: 10.1517/14712598.2.4.371. [DOI] [PubMed] [Google Scholar]
  4. Bonner R. F., Emmert-Buck M., Cole K., Pohida T., Chuaqui R., Goldstein S., Liotta L. A. Laser capture microdissection: molecular analysis of tissue. Science. 1997 Nov 21;278(5342):1481–1481,1483. doi: 10.1126/science.278.5342.1481. [DOI] [PubMed] [Google Scholar]
  5. Bubendorf L., Nocito A., Moch H., Sauter G. Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol. 2001 Sep;195(1):72–79. doi: 10.1002/path.893. [DOI] [PubMed] [Google Scholar]
  6. Böhm M., Wieland I., Schütze K., Rübben H. Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol. 1997 Jul;151(1):63–67. [PMC free article] [PubMed] [Google Scholar]
  7. Carbone A. Will the "new biology" affect the future of histopathology? Int J Biol Markers. 2001 Jan-Mar;16(1):1–4. doi: 10.1177/172460080101600101. [DOI] [PubMed] [Google Scholar]
  8. Chew S. J., Beuerman R. W., Kaufman H. E., McDonald M. B. In vivo confocal microscopy of corneal wound healing after excimer laser photorefractive keratectomy. CLAO J. 1995 Oct;21(4):273–280. [PubMed] [Google Scholar]
  9. Chew S. J., Beuerman R. W., Kaufman H. E. Real-time confocal microscopy of keratocyte activity in wound healing after cryoablation in rabbit corneas. Scanning. 1994 Sep-Oct;16(5):269–274. [PubMed] [Google Scholar]
  10. Craven R. A., Banks R. E. Laser capture microdissection and proteomics: possibilities and limitation. Proteomics. 2001 Oct;1(10):1200–1204. doi: 10.1002/1615-9861(200110)1:10<1200::AID-PROT1200>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  11. Czajkowsky D. M., Iwamoto H., Shao Z. Atomic force microscopy in structural biology: from the subcellular to the submolecular. J Electron Microsc (Tokyo) 2000;49(3):395–406. doi: 10.1093/oxfordjournals.jmicro.a023821. [DOI] [PubMed] [Google Scholar]
  12. DeLellis R. A. In situ hybridization techniques for the analysis of gene expression: applications in tumor pathology. Hum Pathol. 1994 Jun;25(6):580–585. doi: 10.1016/0046-8177(94)90222-4. [DOI] [PubMed] [Google Scholar]
  13. Delaney P. M., King R. G., Lambert J. R., Harris M. R. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo. J Anat. 1994 Feb;184(Pt 1):157–160. [PMC free article] [PubMed] [Google Scholar]
  14. Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science. 1990 Apr 6;248(4951):73–76. doi: 10.1126/science.2321027. [DOI] [PubMed] [Google Scholar]
  15. Diaspro A. Introduction to two-photon microscopy. Microsc Res Tech. 1999 Nov 1;47(3):163–164. doi: 10.1002/(SICI)1097-0029(19991101)47:3<163::AID-JEMT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  16. Fotiadis Dimitrios, Scheuring Simon, Müller Shirley A., Engel Andreas, Müller Daniel J. Imaging and manipulation of biological structures with the AFM. Micron. 2002;33(4):385–397. doi: 10.1016/s0968-4328(01)00026-9. [DOI] [PubMed] [Google Scholar]
  17. Geboes K. Barrett's esophagus: the metaplasia-dysplasia-carcinoma sequence: morphological aspects. Acta Gastroenterol Belg. 2000 Jan-Mar;63(1):13–17. [PubMed] [Google Scholar]
  18. Georgakoudi I., Jacobson B. C., Van Dam J., Backman V., Wallace M. B., Müller M. G., Zhang Q., Badizadegan K., Sun D., Thomas G. A. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus. Gastroenterology. 2001 Jun;120(7):1620–1629. doi: 10.1053/gast.2001.24842. [DOI] [PubMed] [Google Scholar]
  19. Gillespie J. W., Ahram M., Best C. J., Swalwell J. I., Krizman D. B., Petricoin E. F., Liotta L. A., Emmert-Buck M. R. The role of tissue microdissection in cancer research. Cancer J. 2001 Jan-Feb;7(1):32–39. [PubMed] [Google Scholar]
  20. Going J. J., Lamb R. F. Practical histological microdissection for PCR analysis. J Pathol. 1996 May;179(1):121–124. doi: 10.1002/(SICI)1096-9896(199605)179:1<121::AID-PATH536>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  21. Gozzetti A., Le Beau M. M. Fluorescence in situ hybridization: uses and limitations. Semin Hematol. 2000 Oct;37(4):320–333. doi: 10.1016/s0037-1963(00)90013-1. [DOI] [PubMed] [Google Scholar]
  22. Hinterdorfer P., Schütz G., Kienberger F., Schindler H. Detection and characterization of single biomolecules at surfaces. J Biotechnol. 2001 Nov;82(1):25–35. doi: 10.1016/s1389-0352(01)00030-7. [DOI] [PubMed] [Google Scholar]
  23. Horvath L., Henshall S. The application of tissue microarrays to cancer research. Pathology. 2001 May;33(2):125–129. doi: 10.1080/003130201200338791. [DOI] [PubMed] [Google Scholar]
  24. Imbert D., Hoogstraate J., Marttin E., Cullander C. Imaging thick tissues with confocal microscopy. Methods Mol Biol. 1999;122:341–355. doi: 10.1385/1-59259-722-x:341. [DOI] [PubMed] [Google Scholar]
  25. Jester J. V., Andrews P. M., Petroll W. M., Lemp M. A., Cavanagh H. D. In vivo, real-time confocal imaging. J Electron Microsc Tech. 1991 May;18(1):50–60. doi: 10.1002/jemt.1060180108. [DOI] [PubMed] [Google Scholar]
  26. Johnson C. W. Issues in immunohistochemistry. Toxicol Pathol. 1999 Mar-Apr;27(2):246–248. doi: 10.1177/019262339902700214. [DOI] [PubMed] [Google Scholar]
  27. Kallioniemi O. P., Wagner U., Kononen J., Sauter G. Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet. 2001 Apr;10(7):657–662. doi: 10.1093/hmg/10.7.657. [DOI] [PubMed] [Google Scholar]
  28. Mallery S., Van Dam J. Advances in diagnostic and therapeutic endoscopy. Med Clin North Am. 2000 Sep;84(5):1059–1083. doi: 10.1016/s0025-7125(05)70276-5. [DOI] [PubMed] [Google Scholar]
  29. Mallery S., Van Dam J. Endoscopic practice at the start of the new millennium. Gastroenterology. 2000 Feb;118(2 Suppl 1):S129–S147. doi: 10.1016/s0016-5085(00)70011-4. [DOI] [PubMed] [Google Scholar]
  30. McNicol A. M., Farquharson M. A. In situ hybridization and its diagnostic applications in pathology. J Pathol. 1997 Jul;182(3):250–261. doi: 10.1002/(SICI)1096-9896(199707)182:3<250::AID-PATH837>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  31. Merchant F. A., Aggarwal S. J., Diller K. R., Bovik A. C. In-vivo analysis of angiogenesis and revascularization of transplanted pancreatic islets using confocal microscopy. J Microsc. 1994 Dec;176(Pt 3):262–275. doi: 10.1111/j.1365-2818.1994.tb03524.x. [DOI] [PubMed] [Google Scholar]
  32. Merchant F. A., Diller K. R., Aggarwal S. J., Bovik A. C. Angiogenesis in cultured and cryopreserved pancreatic islet grafts. Transplantation. 1997 Jun 15;63(11):1652–1660. doi: 10.1097/00007890-199706150-00020. [DOI] [PubMed] [Google Scholar]
  33. Mitchell B. S., Dhami D., Schumacher U. In situ hybridisation: a review of methodologies and applications in the biomedical sciences. Med Lab Sci. 1992 Jun;49(2):107–118. [PubMed] [Google Scholar]
  34. Mitchison T. J., Sawin K. E., Theriot J. A., Gee K., Mallavarapu A. Caged fluorescent probes. Methods Enzymol. 1998;291:63–78. doi: 10.1016/s0076-6879(98)91007-2. [DOI] [PubMed] [Google Scholar]
  35. Moch H., Kononen T., Kallioniemi O. P., Sauter G. Tissue microarrays: what will they bring to molecular and anatomic pathology? Adv Anat Pathol. 2001 Jan;8(1):14–20. doi: 10.1097/00125480-200101000-00002. [DOI] [PubMed] [Google Scholar]
  36. Nuovo G. J. Co-labeling using in situ PCR: a review. J Histochem Cytochem. 2001 Nov;49(11):1329–1339. doi: 10.1177/002215540104901101. [DOI] [PubMed] [Google Scholar]
  37. Nuovo G. J. Detection of viral infections by in situ PCR: theoretical considerations and possible value in diagnostic pathology. J Clin Lab Anal. 1996;10(6):335–349. doi: 10.1002/(SICI)1098-2825(1996)10:6<335::AID-JCLA5>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  38. Nuovo G. J. In situ PCR: protocols and applications. PCR Methods Appl. 1995 Feb;4(4):S151–S167. doi: 10.1101/gr.4.4.s151. [DOI] [PubMed] [Google Scholar]
  39. Nuovo G. J. In situ localization of PCR-amplified DNA and cDNA. Mol Biotechnol. 1998 Aug;10(1):49–62. doi: 10.1007/BF02745862. [DOI] [PubMed] [Google Scholar]
  40. Nuovo G. J. PCR in situ hybridization. Methods Mol Biol. 1994;33:223–241. doi: 10.1385/0-89603-280-9:223. [DOI] [PubMed] [Google Scholar]
  41. Petrán M., Hadravský M. Tandem scanning microscope--a new tool for three-dimensional microanatomy. Prog Clin Biol Res. 1989;295:551–558. [PubMed] [Google Scholar]
  42. Piston D. W., Knobel S. M. Quantitative imaging of metabolism by two-photon excitation microscopy. Methods Enzymol. 1999;307:351–368. doi: 10.1016/s0076-6879(99)07023-8. [DOI] [PubMed] [Google Scholar]
  43. Ried T., Schröck E., Ning Y., Wienberg J. Chromosome painting: a useful art. Hum Mol Genet. 1998;7(10):1619–1626. doi: 10.1093/hmg/7.10.1619. [DOI] [PubMed] [Google Scholar]
  44. Ross J. S., Fletcher J. A. HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am J Clin Pathol. 1999 Jul;112(1 Suppl 1):S53–S67. [PubMed] [Google Scholar]
  45. Sipkins D. A., Cheresh D. A., Kazemi M. R., Nevin L. M., Bednarski M. D., Li K. C. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med. 1998 May;4(5):623–626. doi: 10.1038/nm0598-623. [DOI] [PubMed] [Google Scholar]
  46. Sirivatanauksorn Y., Drury R., Crnogorac-Jurcević T., Sirivatanauksorn V., Lemoine N. R. Laser-assisted microdissection: applications in molecular pathology. J Pathol. 1999 Oct;189(2):150–154. doi: 10.1002/(SICI)1096-9896(199910)189:2<150::AID-PATH451>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  47. Specht K., Richter T., Müller U., Walch A., Werner M., Höfler H. Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol. 2001 Feb;158(2):419–429. doi: 10.1016/S0002-9440(10)63985-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stoler M. H. In situ hybridization. A research technique or routine diagnostic test? Arch Pathol Lab Med. 1993 May;117(5):478–481. [PubMed] [Google Scholar]
  49. Swanson P. E. Foundations of immunohistochemistry. A practical review. Am J Clin Pathol. 1988 Sep;90(3):333–339. doi: 10.1093/ajcp/90.3.333. [DOI] [PubMed] [Google Scholar]
  50. Tadrous P. J. Methods for imaging the structure and function of living tissues and cells: 1. Optical coherence tomography. J Pathol. 2000 Jun;191(2):115–119. doi: 10.1002/(SICI)1096-9896(200006)191:2<115::AID-PATH589>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  51. Tadrous P. J. Methods for imaging the structure and function of living tissues and cells: 2. Fluorescence lifetime imaging. J Pathol. 2000 Jul;191(3):229–234. doi: 10.1002/1096-9896(200007)191:3<229::AID-PATH623>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  52. Tadrous P. J. Methods for imaging the structure and function of living tissues and cells: 3. Confocal microscopy and micro-radiology. J Pathol. 2000 Aug;191(4):345–354. doi: 10.1002/1096-9896(200008)191:4<345::AID-PATH696>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  53. Tibiletti M. G., Bernasconi B., Dionigi A., Riva C. The applications of FISH in tumor pathology. Adv Clin Path. 1999 Oct;3(4):111–118. [PubMed] [Google Scholar]
  54. Tung S. Y., Wu C. S., Su M. Y. Magnifying colonoscopy in differentiating neoplastic from nonneoplastic colorectal lesions. Am J Gastroenterol. 2001 Sep;96(9):2628–2632. doi: 10.1111/j.1572-0241.2001.04120.x. [DOI] [PubMed] [Google Scholar]
  55. Von Kleist S. Ten years of tumor imaging with labelled antibodies. In Vivo. 1993 Nov-Dec;7(6B):581–584. [PubMed] [Google Scholar]
  56. Walch A., Komminoth P., Hutzler P., Aubele M., Höfler H., Werner M. Microdissection of tissue sections: application to the molecular genetic characterisation of premalignant lesions. Pathobiology. 2000 Jan-Feb;68(1):9–17. doi: 10.1159/000028110. [DOI] [PubMed] [Google Scholar]
  57. Walch A., Specht K., Smida J., Aubele M., Zitzelsberger H., Höfler H., Werner M. Tissue microdissection techniques in quantitative genome and gene expression analyses. Histochem Cell Biol. 2001 Apr;115(4):269–276. doi: 10.1007/s004180100253. [DOI] [PubMed] [Google Scholar]
  58. von Eggeling F., Davies H., Lomas L., Fiedler W., Junker K., Claussen U., Ernst G. Tissue-specific microdissection coupled with ProteinChip array technologies: applications in cancer research. Biotechniques. 2000 Nov;29(5):1066–1070. doi: 10.2144/00295rr02. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES