Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Apr;146(4):999–1007.

Different subsets of T cells in conjunction with natural killer cells, macrophages, and activated microglia participate in the intracerebral immune response to Toxoplasma gondii in athymic nude and immunocompetent rats.

D Schlüter 1, A Hein 1, R Dörries 1, M Deckert-Schlüter 1
PMCID: PMC1869253  PMID: 7717465

Abstract

Oral infection of athymic nude and immunocompetent Lewis rats with Toxoplasma gondii induced a chronic nonlethal encephalitis. The histopathological pattern of Toxoplasma encephalitis was significantly different in both groups of animals and there were substantially larger numbers of Toxoplasma cysts in the brains of athymic rats. Combined immunohistochemical and flow cytometric analyses of intracerebral leukocytes identified alpha beta TCR+ CD4+ and CD8+ T cells; macrophages, and natural killer cells as inflammatory cell populations in immunocompetent rats, whereas in athymic rats natural killer cells, macrophages, and gamma delta TCR+ CD8+ CD3+ T cells contributed to the intracerebral inflammatory infiltrates. These findings not only point to a major participation of alpha beta TCR+ T cells to the intracerebral immune response, but also indicate that they are not essential to prevent the development of a lethal Toxoplasma encephalitis. In addition, microglia were strongly activated in both strains with simultaneous up-regulation of major histocompatibility complex class I and II antigens and CD4. Activation of microglia was most prominent in athymic rats, demonstrating that immunodeficiency does not preclude an up-regulation of these molecules including the human immunodeficiency virus receptor CD4 on microglial cells.

Full text

PDF
999

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo F. G. Depletion of L3T4+ (CD4+) T lymphocytes prevents development of resistance to Toxoplasma gondii in mice. Infect Immun. 1991 May;59(5):1614–1619. doi: 10.1128/iai.59.5.1614-1619.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beuscher H. U., Rausch U. P., Otterness I. G., Röllinghoff M. Transition from interleukin 1 beta (IL-1 beta) to IL-1 alpha production during maturation of inflammatory macrophages in vivo. J Exp Med. 1992 Jun 1;175(6):1793–1797. doi: 10.1084/jem.175.6.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinkmann R., Schwinn A., Narayan O., Zink C., Kreth H. W., Roggendorf W., Dörries R., Schwender S., Imrich H., ter Meulen V. Human immunodeficiency virus infection in microglia: correlation between cells infected in the brain and cells cultured from infectious brain tissue. Ann Neurol. 1992 Apr;31(4):361–365. doi: 10.1002/ana.410310403. [DOI] [PubMed] [Google Scholar]
  4. Casabona J., Sánchez E., Graus F., Abós J., Segura A. Trends and survival for AIDS patients presenting with indicative neurologic diseases. Acta Neurol Scand. 1991 Jul;84(1):51–55. doi: 10.1111/j.1600-0404.1991.tb04902.x. [DOI] [PubMed] [Google Scholar]
  5. Chao C. C., Anderson W. R., Hu S., Gekker G., Martella A., Peterson P. K. Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin Immunol Immunopathol. 1993 May;67(2):178–183. doi: 10.1006/clin.1993.1062. [DOI] [PubMed] [Google Scholar]
  6. Chao C. C., Gekker G., Hu S., Peterson P. K. Human microglial cell defense against Toxoplasma gondii. The role of cytokines. J Immunol. 1994 Feb 1;152(3):1246–1252. [PubMed] [Google Scholar]
  7. Chinchilla M., Guerrero O. M., Solano E. Lack of multiplication of Toxoplasma in macrophages of rats in vitro. J Parasitol. 1982 Oct;68(5):952–955. [PubMed] [Google Scholar]
  8. Darcy F., Maes P., Gras-Masse H., Auriault C., Bossus M., Deslee D., Godard I., Cesbron M. F., Tartar A., Capron A. Protection of mice and nude rats against toxoplasmosis by a multiple antigenic peptide construction derived from Toxoplasma gondii P30 antigen. J Immunol. 1992 Dec 1;149(11):3636–3641. [PubMed] [Google Scholar]
  9. Deckert-Schlüter M., Schlüter D., Hof H., Wiestler O. D., Lassmann H. Differential expression of ICAM-1, VCAM-1 and their ligands LFA-1, Mac-1, CD43, VLA-4, and MHC class II antigens in murine Toxoplasma encephalitis: a light microscopic and ultrastructural immunohistochemical study. J Neuropathol Exp Neurol. 1994 Sep;53(5):457–468. doi: 10.1097/00005072-199409000-00005. [DOI] [PubMed] [Google Scholar]
  10. Deckert-Schlüter M., Schlüter D., Schmidt D., Schwendemann G., Wiestler O. D., Hof H. Toxoplasma encephalitis in congenic B10 and BALB mice: impact of genetic factors on the immune response. Infect Immun. 1994 Jan;62(1):221–228. doi: 10.1128/iai.62.1.221-228.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denkers E. Y., Gazzinelli R. T., Martin D., Sher A. Emergence of NK1.1+ cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med. 1993 Nov 1;178(5):1465–1472. doi: 10.1084/jem.178.5.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabry Z., Raine C. S., Hart M. N. Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today. 1994 May;15(5):218–224. doi: 10.1016/0167-5699(94)90247-X. [DOI] [PubMed] [Google Scholar]
  13. Gazzinelli R., Xu Y., Hieny S., Cheever A., Sher A. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol. 1992 Jul 1;149(1):175–180. [PubMed] [Google Scholar]
  14. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  15. Haas W., Pereira P., Tonegawa S. Gamma/delta cells. Annu Rev Immunol. 1993;11:637–685. doi: 10.1146/annurev.iy.11.040193.003225. [DOI] [PubMed] [Google Scholar]
  16. Hickey W. F., Vass K., Lassmann H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol. 1992 May;51(3):246–256. doi: 10.1097/00005072-199205000-00002. [DOI] [PubMed] [Google Scholar]
  17. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  18. Kure K., Weidenheim K. M., Lyman W. D., Dickson D. W. Morphology and distribution of HIV-1 gp41-positive microglia in subacute AIDS encephalitis. Pattern of involvement resembling a multisystem degeneration. Acta Neuropathol. 1990;80(4):393–400. doi: 10.1007/BF00307693. [DOI] [PubMed] [Google Scholar]
  19. Langermans J. A., Van der Hulst M. E., Nibbering P. H., Hiemstra P. S., Fransen L., Van Furth R. IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J Immunol. 1992 Jan 15;148(2):568–574. [PubMed] [Google Scholar]
  20. Langermans J. A., van der Hulst M. E., Nibbering P. H., van Furth R. Endogenous tumor necrosis factor alpha is required for enhanced antimicrobial activity against Toxoplasma gondii and Listeria monocytogenes in recombinant gamma interferon-treated mice. Infect Immun. 1992 Dec;60(12):5107–5112. doi: 10.1128/iai.60.12.5107-5112.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Luft B. J., Remington J. S. AIDS commentary. Toxoplasmic encephalitis. J Infect Dis. 1988 Jan;157(1):1–6. doi: 10.1093/infdis/157.1.1. [DOI] [PubMed] [Google Scholar]
  22. Perry V. H., Gordon S. Macrophages and microglia in the nervous system. Trends Neurosci. 1988 Jun;11(6):273–277. doi: 10.1016/0166-2236(88)90110-5. [DOI] [PubMed] [Google Scholar]
  23. Perry V. H., Gordon S. Modulation of CD4 antigen on macrophages and microglia in rat brain. J Exp Med. 1987 Oct 1;166(4):1138–1143. doi: 10.1084/jem.166.4.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlüter D., Deckert-Schlüter M., Schwendemann G., Brunner H., Hof H. Expression of major histocompatibility complex class II antigens and levels of interferon-gamma, tumour necrosis factor, and interleukin-6 in cerebrospinal fluid and serum in Toxoplasma gondii-infected SCID and immunocompetent C.B-17 mice. Immunology. 1993 Mar;78(3):430–435. [PMC free article] [PubMed] [Google Scholar]
  25. Schlüter D., Löhler J., Deckert M., Hof H., Schwendemann G. Toxoplasma encephalitis of immunocompetent and nude mice: immunohistochemical characterisation of Toxoplasma antigen, infiltrates and major histocompatibility complex gene products. J Neuroimmunol. 1991 Mar;31(3):185–198. doi: 10.1016/0165-5728(91)90040-e. [DOI] [PubMed] [Google Scholar]
  26. Sedgwick J. D., Schwender S., Imrich H., Dörries R., Butcher G. W., ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438–7442. doi: 10.1073/pnas.88.16.7438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sher A., Oswald I. P., Hieny S., Gazzinelli R. T. Toxoplasma gondii induces a T-independent IFN-gamma response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-alpha. J Immunol. 1993 May 1;150(9):3982–3989. [PubMed] [Google Scholar]
  28. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  29. Subauste C. S., Dawson L., Remington J. S. Human lymphokine-activated killer cells are cytotoxic against cells infected with Toxoplasma gondii. J Exp Med. 1992 Dec 1;176(6):1511–1519. doi: 10.1084/jem.176.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsuji M., Mombaerts P., Lefrancois L., Nussenzweig R. S., Zavala F., Tonegawa S. Gamma delta T cells contribute to immunity against the liver stages of malaria in alpha beta T-cell-deficient mice. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):345–349. doi: 10.1073/pnas.91.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zack J. A., Cann A. J., Lugo J. P., Chen I. S. HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science. 1988 May 20;240(4855):1026–1029. doi: 10.1126/science.2835813. [DOI] [PubMed] [Google Scholar]
  32. Zenner L., Darcy F., Cesbron-Delauw M. F., Capron A. Rat model of congenital toxoplasmosis: rate of transmission of three Toxoplasma gondii strains to fetuses and protective effect of a chronic infection. Infect Immun. 1993 Jan;61(1):360–363. doi: 10.1128/iai.61.1.360-363.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES