Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 May;146(5):1248–1259.

Derivation of phenobarbital-responsive immortal rat hepatocytes.

C Chiao 1, Y Zhang 1, D G Kaufman 1, W K Kaufmann 1
PMCID: PMC1869282  PMID: 7747817

Abstract

Two lines of rat hepatocytes, designated 6/15 and 6/27, were obtained from carcinogen-treated livers by cultivation in medium containing the liver tumor promoter, phenobarbital (PB). Both lines appeared to be PB-responsive and to have an unlimited in vitro proliferative lifespan, i.e., immortality. The ability of pure 6/27 hepatocytes to form colonies from single cells was strictly dependent upon PB; it was reduced by 97 to 99% in the absence of PB. These hepatocytes were not tumorigenic. For 6/27 hepatocytes in early passages where cultures contained fibroblast contaminants and later when they were a pure culture, PB was able to enhance colony growth from single cells and facilitated population expansion by sustaining DNA synthesis and by inhibiting cell lysis. The 6/15 line displayed PB-dependent colony formation and was not tumorigenic at early passages. At later passages 6/15 hepatocytes were less dependent on PB for colony formation, and they formed hepatocellular carcinoma when transplanted into livers of syngeneic rats. The demonstration that PB sustained the proliferation and viability of hepatocytes with enhanced growth capacity and indefinite proliferative lifespan suggests that PB may be necessary for progression of these chemically initiated hepatocytes to immortal and tumorigenic lines in vitro.

Full text

PDF
1248

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba M., Klein-Szanto A. J., Trono D., Obara T., Yoakum G. H., Masui T., Harris C. C. Preneoplastic and neoplastic growth of xenotransplanted lung-derived human cell lines using deepithelialized rat tracheas. Cancer Res. 1987 Jan 15;47(2):573–578. [PubMed] [Google Scholar]
  2. Barrett J. C., Oshimura M., Koi M. Role of oncogenes and tumor suppressor genes in a multistep model of carcinogenesis. Symp Fundam Cancer Res. 1986;39:45–56. [PubMed] [Google Scholar]
  3. Boone C. W., Kelloff G. J., Steele V. E. Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy. Cancer Res. 1992 Apr 1;52(7):1651–1659. [PubMed] [Google Scholar]
  4. Boyd J. A., Barrett J. C. Genetic and cellular basis of multistep carcinogenesis. Pharmacol Ther. 1990;46(3):469–486. doi: 10.1016/0163-7258(90)90028-z. [DOI] [PubMed] [Google Scholar]
  5. Fang X. J., Flowers M., Keating A., Cameron R., Sherman M. ras transformation of simian virus 40-immortalized rat hepatocytes: an in vitro model of hepatocarcinogenesis. Cancer Res. 1992 Jan 1;52(1):173–180. [PubMed] [Google Scholar]
  6. Grisham J. W. Cell types in rat liver cultures: their identification and isolation. Mol Cell Biochem. 1983;53-54(1-2):23–33. doi: 10.1007/BF00225244. [DOI] [PubMed] [Google Scholar]
  7. Hayflick L. The cell biology of human aging. N Engl J Med. 1976 Dec 2;295(23):1302–1308. doi: 10.1056/NEJM197612022952308. [DOI] [PubMed] [Google Scholar]
  8. Hendrich S., Glauert H. P., Pitot H. C. The phenotypic stability of altered hepatic foci: effects of withdrawal and subsequent readministration of phenobarbital. Carcinogenesis. 1986 Dec;7(12):2041–2045. doi: 10.1093/carcin/7.12.2041. [DOI] [PubMed] [Google Scholar]
  9. Jirtle R. L., Meyer S. A. Liver tumor promotion: effect of phenobarbital on EGF and protein kinase C signal transduction and transforming growth factor-beta 1 expression. Dig Dis Sci. 1991 May;36(5):659–668. doi: 10.1007/BF01297035. [DOI] [PubMed] [Google Scholar]
  10. Kaufmann W. K., MacKenzie S. A., Kaufman D. G. Quantitative relationship between hepatocytic neoplasms and islands of cellular alteration during hepatocarcinogenesis in the male F344 rat. Am J Pathol. 1985 May;119(2):171–174. [PMC free article] [PubMed] [Google Scholar]
  11. Kaufmann W. K., Ririe D. G., Kaufman D. G. Phenobarbital-dependent proliferation of putative initiated rat hepatocytes. Carcinogenesis. 1988 May;9(5):779–782. doi: 10.1093/carcin/9.5.779. [DOI] [PubMed] [Google Scholar]
  12. Kaufmann W. K., Tsao M. S., Novicki D. L. In vitro colonization ability appears soon after initiation of hepatocarcinogenesis in the rat. Carcinogenesis. 1986 Apr;7(4):669–671. doi: 10.1093/carcin/7.4.669. [DOI] [PubMed] [Google Scholar]
  13. Kayano T., Nomura K., Hino O., Kitagawa T. Failure of phorbol ester TPA to promote growth of in vivo-initiated rat hepatocytes transferred into a culture system. Gan. 1982 Jun;73(3):354–357. [PubMed] [Google Scholar]
  14. Kitagawa T., Watanabe R., Kayano T., Sugano H. In vitro carcinogenesis of hepatocytes obtained from acetylaminofluorene-treated rat liver and promotion of their growth by phenobarbital. Gan. 1980 Dec;71(6):747–754. [PubMed] [Google Scholar]
  15. Laishes B. A., Rolfe P. B. Quantitative assessment of liver colony formation and hepatocellular carcinoma incidence in rats receiving intravenous injections of isogeneic liver cells isolated during hepatocarcinogenesis. Cancer Res. 1980 Nov;40(11):4133–4143. [PubMed] [Google Scholar]
  16. Nettesheim P., Barrett J. C. Tracheal epithelial cell transformation: a model system for studies on neoplastic progression. Crit Rev Toxicol. 1984;12(3):215–239. doi: 10.3109/10408448409021603. [DOI] [PubMed] [Google Scholar]
  17. Newbold R. F. Multistep malignant transformation of mammalian cells by carcinogens: induction of immortality as a key event. Carcinog Compr Surv. 1985;9:17–28. [PubMed] [Google Scholar]
  18. Pitot H. C., Sirica A. E. The stages of initiation and promotion in hepatocarcinogenesis. Biochim Biophys Acta. 1980 May 6;605(2):191–215. doi: 10.1016/0304-419x(80)90004-9. [DOI] [PubMed] [Google Scholar]
  19. Rao M. S., Nemali M. R., Usuda N., Scarpelli D. G., Makino T., Pitot H. C., Reddy J. K. Lack of expression of glutathione-S-transferase P, gamma-glutamyl transpeptidase, and alpha-fetoprotein messenger RNAs in liver tumors induced by peroxisome proliferators. Cancer Res. 1988 Sep 1;48(17):4919–4925. [PubMed] [Google Scholar]
  20. Schulte-Hermann R., Timmermann-Trosiener I., Barthel G., Bursch W. DNA synthesis, apoptosis, and phenotypic expression as determinants of growth of altered foci in rat liver during phenobarbital promotion. Cancer Res. 1990 Aug 15;50(16):5127–5135. [PubMed] [Google Scholar]
  21. Shay J. W., Wright W. E., Werbin H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta. 1991 Apr 16;1072(1):1–7. doi: 10.1016/0304-419x(91)90003-4. [DOI] [PubMed] [Google Scholar]
  22. Sizeland A. M., Burgess A. W. Anti-sense transforming growth factor alpha oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell. 1992 Nov;3(11):1235–1243. doi: 10.1091/mbc.3.11.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Slifkin M., Merkow L. P., Pardo M., Epstein S. M., Leighton J., Farber E. Growth in vitro of cells from hyperplastic nodules of liver induced by 2-fluorenylacetamide or aflatoxin B1. Science. 1970 Jan 16;167(3916):285–287. doi: 10.1126/science.167.3916.285. [DOI] [PubMed] [Google Scholar]
  24. Stein G. H. SV40-transformed human fibroblasts: evidence for cellular aging in pre-crisis cells. J Cell Physiol. 1985 Oct;125(1):36–44. doi: 10.1002/jcp.1041250106. [DOI] [PubMed] [Google Scholar]
  25. Sun Q., Tsutsumi K., Kelleher M. B., Pater A., Pater M. M. Squamous metaplasia of normal and carcinoma in situ of HPV 16-immortalized human endocervical cells. Cancer Res. 1992 Aug 1;52(15):4254–4260. [PubMed] [Google Scholar]
  26. Tsao M. S., Grisham J. W., Nelson K. G. Clonal analysis of tumorigenicity and paratumorigenic phenotypes in rat liver epithelial cells chemically transformed in vitro. Cancer Res. 1985 Oct;45(10):5139–5144. [PubMed] [Google Scholar]
  27. Woodworth C., Secott T., Isom H. C. Transformation of rat hepatocytes by transfection with simian virus 40 DNA to yield proliferating differentiated cells. Cancer Res. 1986 Aug;46(8):4018–4026. [PubMed] [Google Scholar]
  28. Wright W. E., Shay J. W. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol. 1992 Jul-Aug;27(4):383–389. doi: 10.1016/0531-5565(92)90069-c. [DOI] [PubMed] [Google Scholar]
  29. Xu Y. H., Campbell H. A., Sattler G. L., Hendrich S., Maronpot R., Sato K., Pitot H. C. Quantitative stereological analysis of the effects of age and sex on multistage hepatocarcinogenesis in the rat by use of four cytochemical markers. Cancer Res. 1990 Feb 1;50(3):472–479. [PubMed] [Google Scholar]
  30. Yeoh G., Porter I., Arcus M., Douglas A. Transformation of cultured fetal rat liver cells by MDAB and phenobarbital. Morphological, biochemical and immunocytochemical characterization of cell lines. Carcinogenesis. 1989 Jun;10(6):1015–1027. doi: 10.1093/carcin/10.6.1015. [DOI] [PubMed] [Google Scholar]
  31. Yuspa S. H., Morgan D. L. Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature. 1981 Sep 3;293(5827):72–74. doi: 10.1038/293072a0. [DOI] [PubMed] [Google Scholar]
  32. Yuspa S. H., Poirier M. C. Chemical carcinogenesis: from animal models to molecular models in one decade. Adv Cancer Res. 1988;50:25–70. doi: 10.1016/s0065-230x(08)60434-0. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES