Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Dec;147(6):1811–1822.

Conditional transformation of mouse liver epithelial cells. An in vitro model for analysis of genetic events in hepatocarcinogenesis.

G H Lee 1, K Ogawa 1, N R Drinkwater 1
PMCID: PMC1869944  PMID: 7495305

Abstract

Primary rodent and human hepatocytes have a very limited lifespan in culture and are not readily applicable to transformation studies in vitro. To facilitate the investigation of early genetic events involved in hepatocarcinogenesis, we examined a transformation assay system utilizing conditionally immortalized mouse liver epithelial cells as an alternative to primary hepatocytes. By infecting primary mouse hepatocytes with a recombinant retrovirus carrying a temperature-sensitive simian virus 40 large T antigen gene, two mouse liver epithelial cell lines, CHST8 and CHST10-2.1, were established. Because of the heat-labile nature of the large T antigen, the cell lines proliferated rapidly at 33 degrees C, but were growth-arrested at 39 degrees C. Because activated c-H-ras and c-myc oncogenes are frequently found to be involved in mouse hepatocarcinogenesis in vivo, we assessed whether those oncogenes can complement the immortalizing function of the large T antigen at the nonpermissive temperature. When CHST8 cells were doubly transfected with activated c-H-ras and c-myc at 33 degrees C, they exhibited clonal growth ability even after shifting the temperature to 39 degrees C. However, neither c-H-ras nor c-myc alone allowed growth at 39 degrees C. On the other hand, c-H-ras alone was sufficient for overcoming the growth defect of CHST10-2.1 cells at 39 degrees C, whereas c-myc alone was again ineffective. Northern blot studies revealed that endogenous c-myc expression was significantly downregulated in the parental CHST8 cells after a temperature shift from 33 to 39 degrees C. In contrast, in the parental CHST10-2.1 cells, appreciable c-myc expression was observed at both temperatures. These results indicate that c-H-ras and c-myc can cooperate in complementing the ability of the temperature-sensitive large T antigen to immortalize mouse liver cells at the nonpermissive temperature. In addition, the mutant c-H-ras, but not c-myc, cooperated with the functional T antigen at 33 degrees C to allow growth in soft agarose of the CHST8 and CHST10-2.1 cell lines. However, cell lines carrying mutant c-H-ras and overexpressing c-myc were unable to grow in soft agarose at 39 degrees C. Thus, the two cellular oncogenes were insufficient for full transformation of the liver epithelial cells. The present in vitro model should be useful for investigating molecular events involved in both early and late stages of hepatocarcinogenesis.

Full text

PDF
1811

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer-Hofmann R., Klimek F., Buchmann A., Müller O., Bannasch P., Schwarz M. Role of mutations at codon 61 of the c-Ha-ras gene during diethylnitrosamine-induced hepatocarcinogenesis in C3H/He mice. Mol Carcinog. 1992;6(1):60–67. doi: 10.1002/mc.2940060110. [DOI] [PubMed] [Google Scholar]
  2. Bishop J. M. Cellular oncogenes and retroviruses. Annu Rev Biochem. 1983;52:301–354. doi: 10.1146/annurev.bi.52.070183.001505. [DOI] [PubMed] [Google Scholar]
  3. Braun L., Goyette M., Yaswen P., Thompson N. L., Fausto N. Growth in culture and tumorigenicity after transfection with the ras oncogene of liver epithelial cells from carcinogen-treated rats. Cancer Res. 1987 Aug 1;47(15):4116–4124. [PubMed] [Google Scholar]
  4. Buchmann A., Bauer-Hofmann R., Mahr J., Drinkwater N. R., Luz A., Schwarz M. Mutational activation of the c-Ha-ras gene in liver tumors of different rodent strains: correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):911–915. doi: 10.1073/pnas.88.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchmann A., Mahr J., Bauer-Hofmann R., Schwarz M. Mutations at codon 61 of the Ha-ras proto-oncogene in precancerous liver lesions of the B6C3F1 mouse. Mol Carcinog. 1989;2(3):121–125. doi: 10.1002/mc.2940020303. [DOI] [PubMed] [Google Scholar]
  6. Cayama E., Tsuda H., Sarma D. S., Farber E. Initiation of chemical carcinogenesis requires cell proliferation. Nature. 1978 Sep 7;275(5675):60–62. doi: 10.1038/275060a0. [DOI] [PubMed] [Google Scholar]
  7. Chou J. Y. Temperature-sensitive adult liver cell line dependent on glucocorticoid for differentiation. Mol Cell Biol. 1983 Jun;3(6):1013–1020. doi: 10.1128/mcb.3.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dragani T. A., Manenti G., Colombo B. M., Falvella F. S., Gariboldi M., Pierotti M. A., Della Porta G. Incidence of mutations at codon 61 of the Ha-ras gene in liver tumors of mice genetically susceptible and resistant to hepatocarcinogenesis. Oncogene. 1991 Feb;6(2):333–338. [PubMed] [Google Scholar]
  9. Dragani T. A., Manenti G., Della Porta G., Gattoni-Celli S., Weinstein I. B. Expression of retroviral sequences and oncogenes in murine hepatocellular tumors. Cancer Res. 1986 Apr;46(4 Pt 2):1915–1919. [PubMed] [Google Scholar]
  10. Drinkwater N. R., Klinedinst D. K. Chemically induced mutagenesis in a shuttle vector with a low-background mutant frequency. Proc Natl Acad Sci U S A. 1986 May;83(10):3402–3406. doi: 10.1073/pnas.83.10.3402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Emerman M., Temin H. M. Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 1986 Dec 9;14(23):9381–9396. doi: 10.1093/nar/14.23.9381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fang X. J., Flowers M., Keating A., Cameron R., Sherman M. ras transformation of simian virus 40-immortalized rat hepatocytes: an in vitro model of hepatocarcinogenesis. Cancer Res. 1992 Jan 1;52(1):173–180. [PubMed] [Google Scholar]
  13. Fang X. J., Keating A., Flowers M., Liew C. C., Gupta H., Mills G. B., Sherman M. The v-raf oncogene enhances tumorigenicity and suppresses differentiation in vivo in a rat hepatocyte cell line. Carcinogenesis. 1993 Apr;14(4):669–674. doi: 10.1093/carcin/14.4.669. [DOI] [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  15. Hermeking H., Eick D. Mediation of c-Myc-induced apoptosis by p53. Science. 1994 Sep 30;265(5181):2091–2093. doi: 10.1126/science.8091232. [DOI] [PubMed] [Google Scholar]
  16. Hermeking H., Wolf D. A., Kohlhuber F., Dickmanns A., Billaud M., Fanning E., Eick D. Role of c-myc in simian virus 40 large tumor antigen-induced DNA synthesis in quiescent 3T3-L1 mouse fibroblasts. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10412–10416. doi: 10.1073/pnas.91.22.10412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Isom H. C., Tevethia M. J., Kreider J. W. Tumorigenicity of simian virus 40-transformed rat hepatocytes. Cancer Res. 1981 Jun;41(6):2126–2134. [PubMed] [Google Scholar]
  18. Isom H. C., Tevethia M. J., Taylor J. M. Transformation of isolated rat hepatocytes with simian virus 40. J Cell Biol. 1980 Jun;85(3):651–659. doi: 10.1083/jcb.85.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Isom H. C., Woodworth C. D., Meng Y., Kreider J., Miller T., Mengel L. Introduction of the ras oncogene transforms a simian virus 40-immortalized hepatocyte cell line without loss of expression of albumin and other liver-specific genes. Cancer Res. 1992 Feb 15;52(4):940–948. [PubMed] [Google Scholar]
  20. Kadohama T., Tsuji K., Ogawa K. Indistinct cell cycle checkpoint after u.v. damage in H-ras-transformed mouse liver cells despite normal p53 gene expression. Oncogene. 1994 Oct;9(10):2845–2852. [PubMed] [Google Scholar]
  21. Kanda H., Tajima H., Lee G. H., Nomura K., Ohtake K., Matsumoto K., Nakamura T., Kitagawa T. Hepatocyte growth factor transforms immortalized mouse liver epithelial cells. Oncogene. 1993 Nov;8(11):3047–3053. [PubMed] [Google Scholar]
  22. Kaufmann W. K., Tsao M. S., Novicki D. L. In vitro colonization ability appears soon after initiation of hepatocarcinogenesis in the rat. Carcinogenesis. 1986 Apr;7(4):669–671. doi: 10.1093/carcin/7.4.669. [DOI] [PubMed] [Google Scholar]
  23. Kitagawa T., Watanabe R., Kayano T., Sugano H. In vitro carcinogenesis of hepatocytes obtained from acetylaminofluorene-treated rat liver and promotion of their growth by phenobarbital. Gan. 1980 Dec;71(6):747–754. [PubMed] [Google Scholar]
  24. Land H., Parada L. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983 Aug 18;304(5927):596–602. doi: 10.1038/304596a0. [DOI] [PubMed] [Google Scholar]
  25. Lee G. H., Bennett L. M., Carabeo R. A., Drinkwater N. R. Identification of hepatocarcinogen-resistance genes in DBA/2 mice. Genetics. 1995 Jan;139(1):387–395. doi: 10.1093/genetics/139.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee G. H., Drinkwater N. R. The Hcr (hepatocarcinogen resistance) loci of DBA/2J mice partially suppress phenotypic expression of the Hcs (hepatocarcinogen sensitivity) loci of C3H/HeJ mice. Carcinogenesis. 1995 Aug;16(8):1993–1996. doi: 10.1093/carcin/16.8.1993. [DOI] [PubMed] [Google Scholar]
  27. Lee G. H., Li H., Ohtake K., Nomura K., Hino O., Furuta Y., Aizawa S., Kitagawa T. Detection of activated c-H-ras oncogene in hepatocellular carcinomas developing in transgenic mice harboring albumin promoter-regulated simian virus 40 gene. Carcinogenesis. 1990 Jul;11(7):1145–1148. doi: 10.1093/carcin/11.7.1145. [DOI] [PubMed] [Google Scholar]
  28. Lee G. H., Sakai R., Nagao M., Kitagawa T. Role of activated c-H-ras oncogene in the induction and progression of immortal liver epithelial cell lines derived from normal C3H mice. Int J Cancer. 1991 Jan 2;47(1):60–65. doi: 10.1002/ijc.2910470112. [DOI] [PubMed] [Google Scholar]
  29. Lee G. H., Sawada N., Mochizuki Y., Nomura K., Kitagawa T. Immortal epithelial cells of normal C3H mouse liver in culture: possible precursor populations for spontaneous hepatocellular carcinoma. Cancer Res. 1989 Jan 15;49(2):403–409. [PubMed] [Google Scholar]
  30. Lee H., Kawaguchi T., Nomura K., Kitagawa T. Establishment and characterization of a diethylnitrosamine-initiated woodchuck hepatocyte cell line. Hepatology. 1987 Sep-Oct;7(5):937–940. doi: 10.1002/hep.1840070524. [DOI] [PubMed] [Google Scholar]
  31. Li H., Liu J., Nomura K., Lee G. H., Hino O., Ohtake K., Aizawa S., Kitagawa T. In vitro progression-associated c-H-ras activation in neoplastic hepatocyte lines established from SV40-T antigen gene-harboring transgenic mice. Jpn J Cancer Res. 1991 Jan;82(1):4–7. doi: 10.1111/j.1349-7006.1991.tb01736.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Loeber G., Tevethia M. J., Schwedes J. F., Tegtmeyer P. Temperature-sensitive mutants identify crucial structural regions of simian virus 40 large T antigen. J Virol. 1989 Oct;63(10):4426–4430. doi: 10.1128/jvi.63.10.4426-4430.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  34. Nishimori H., Ogawa K., Tateno H. Frequent deletion in chromosome 4 and duplication of chromosome 15 in liver epithelial cells derived from long-term culture of C3H mouse hepatocytes. Int J Cancer. 1994 Oct 1;59(1):108–113. doi: 10.1002/ijc.2910590120. [DOI] [PubMed] [Google Scholar]
  35. Pfeifer A. M., Cole K. E., Smoot D. T., Weston A., Groopman J. D., Shields P. G., Vignaud J. M., Juillerat M., Lipsky M. M., Trump B. F. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5123–5127. doi: 10.1073/pnas.90.11.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reynolds S. H., Stowers S. J., Maronpot R. R., Anderson M. W., Aaronson S. A. Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse. Proc Natl Acad Sci U S A. 1986 Jan;83(1):33–37. doi: 10.1073/pnas.83.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ruley H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature. 1983 Aug 18;304(5927):602–606. doi: 10.1038/304602a0. [DOI] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sawada N., Lee G. H., Mochizuki Y., Ishikawa T. Active proliferation of mouse hepatocytes in primary culture under defined conditions as compared to rat hepatocytes. Jpn J Cancer Res. 1988 Sep;79(9):983–988. doi: 10.1111/j.1349-7006.1988.tb00064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sekiya T., Fushimi M., Hori H., Hirohashi S., Nishimura S., Sugimura T. Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4771–4775. doi: 10.1073/pnas.81.15.4771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sugden B., Marsh K., Yates J. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol. 1985 Feb;5(2):410–413. doi: 10.1128/mcb.5.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vesselinovitch S. D., Mihailovich N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res. 1983 Sep;43(9):4253–4259. [PubMed] [Google Scholar]
  43. Wiseman R. W., Stowers S. J., Miller E. C., Anderson M. W., Miller J. A. Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3 F1 mouse. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5825–5829. doi: 10.1073/pnas.83.16.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Woodworth C., Secott T., Isom H. C. Transformation of rat hepatocytes by transfection with simian virus 40 DNA to yield proliferating differentiated cells. Cancer Res. 1986 Aug;46(8):4018–4026. [PubMed] [Google Scholar]
  45. Wu J. C., Merlino G., Fausto N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):674–678. doi: 10.1073/pnas.91.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yanai N., Suzuki M., Obinata M. Hepatocyte cell lines established from transgenic mice harboring temperature-sensitive simian virus 40 large T-antigen gene. Exp Cell Res. 1991 Nov;197(1):50–56. doi: 10.1016/0014-4827(91)90478-d. [DOI] [PubMed] [Google Scholar]
  47. Yuspa S. H., Poirier M. C. Chemical carcinogenesis: from animal models to molecular models in one decade. Adv Cancer Res. 1988;50:25–70. doi: 10.1016/s0065-230x(08)60434-0. [DOI] [PubMed] [Google Scholar]
  48. Zaret K. S., DiPersio C. M., Jackson D. A., Montigny W. J., Weinstat D. L. Conditional enhancement of liver-specific gene transcription. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9076–9080. doi: 10.1073/pnas.85.23.9076. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES