Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Dec;147(6):1728–1735.

Analysis of the role of membrane polarity in polycystic kidney disease of transgenic SBM mice.

L Barisoni 1, M Trudel 1, N Chrétien 1, L Ward 1, J van Adelsberg 1, V D'Agati 1
PMCID: PMC1869945  PMID: 7495297

Abstract

Altered membrane polarity has been proposed as an important pathogenetic factor in the development of renal cysts in polycystic kidney disease. To determine whether this alteration in epithelial phenotype is a primary or secondary phenomenon, we examined the epithelial membrane polarity of SBM transgenic mice, in which epithelial proliferation mediated by the c-myc oncogene is an established primary event. Kidneys from 32 transgenic mice and 10 age-matched controls from fetal to adult age were immunostained with antibodies to Na,K-ATPase, fodrin, ankyrin, E-cadherin, and tubule segment-specific lectins. In normal control mice, Na,K-ATPase localization was apical in fetal kidneys but became translocated to the basolateral membrane at maturity. Early microcysts in fetal transgenic kidneys displayed similar (95 to 100%) apical Na,K-ATPase. In young and newborn transgenic mice (1 to 8 days of age), Na,K-ATPase localization was extremely heterogeneous. Noncystic tubules demonstrated either apical (mean 23 to 28%), basolateral (mean 48 to 58%), mixed (mean 4 to 15%), or absent (mean 10 to 13%) staining for Na,K-ATPase. Apical Na,K-ATPase was more frequently observed in early cysts (mean 55%) in young transgenic mice but became less prevalent in adult mice (mean 22%), where 30% of cysts had basolateral staining, 39% mixed patterns, and 9% absent staining. Macrocysts typically lost all Na,K-ATPase reactivity. At all ages, Na,K-ATPase colocalized well with cytoskeletal proteins ankyrin and fodrin. These heterogeneous patterns of Na,K-ATPase staining indicate that although altered cell polarity is frequent in early cystic epithelium of SBM mice, it is not a prerequisite to cystogenesis or progressive cyst enlargement. In conclusion, our results support the view that altered cystic membrane polarity is not a primary process, but represents the persistence of an immature epithelial phenotype characteristic of proliferative polycystic kidney disease epithelia.

Full text

PDF
1728

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage F. E., Wingo C. S. Luminal acidification in K-replete OMCDi: contributions of H-K-ATPase and bafilomycin-A1-sensitive H-ATPase. Am J Physiol. 1994 Sep;267(3 Pt 2):F450–F458. doi: 10.1152/ajprenal.1994.267.3.F450. [DOI] [PubMed] [Google Scholar]
  2. Avner E. D., Sweeney W. E., Jr, Nelson W. J. Abnormal sodium pump distribution during renal tubulogenesis in congenital murine polycystic kidney disease. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7447–7451. doi: 10.1073/pnas.89.16.7447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carone F. A., Nakamura S., Caputo M., Bacallao R., Nelson W. J., Kanwar Y. S. Cell polarity in human renal cystic disease. Lab Invest. 1994 May;70(5):648–655. [PubMed] [Google Scholar]
  4. Carone F. A., Nakamura S., Punyarit P., Kanwar Y. S., Nelson W. J. Sequential tubular cell and basement membrane changes in polycystic kidney disease. J Am Soc Nephrol. 1992 Aug;3(2):244–253. doi: 10.1681/ASN.V32244. [DOI] [PubMed] [Google Scholar]
  5. Cowley B. D., Jr, Chadwick L. J., Grantham J. J., Calvet J. P. Elevated proto-oncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. J Am Soc Nephrol. 1991 Feb;1(8):1048–1053. doi: 10.1681/ASN.V181048. [DOI] [PubMed] [Google Scholar]
  6. Cowley B. D., Jr, Smardo F. L., Jr, Grantham J. J., Calvet J. P. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8394–8398. doi: 10.1073/pnas.84.23.8394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. D'Agati V., Trudel M. Lectin characterization of cystogenesis in the SBM transgenic model of polycystic kidney disease. J Am Soc Nephrol. 1992 Oct;3(4):975–983. doi: 10.1681/ASN.V34975. [DOI] [PubMed] [Google Scholar]
  8. Gabow P. A. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993 Jul 29;329(5):332–342. doi: 10.1056/NEJM199307293290508. [DOI] [PubMed] [Google Scholar]
  9. Gottardi C. J., Caplan M. J. An ion-transporting ATPase encodes multiple apical localization signals. J Cell Biol. 1993 Apr;121(2):283–293. doi: 10.1083/jcb.121.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horikoshi S., Kubota S., Martin G. R., Yamada Y., Klotman P. E. Epidermal growth factor (EGF) expression in the congenital polycystic mouse kidney. Kidney Int. 1991 Jan;39(1):57–62. doi: 10.1038/ki.1991.7. [DOI] [PubMed] [Google Scholar]
  11. Kawa G., Nagao S., Yamamoto A., Omori K., Komatz Y., Takahashi H., Tashiro Y. Sodium pump distribution is not reversed in the DBA/2FG-pcy, polycystic kidney disease model mouse. J Am Soc Nephrol. 1994 Jun;4(12):2040–2049. doi: 10.1681/ASN.V4122040. [DOI] [PubMed] [Google Scholar]
  12. Kimberling W. J., Fain P. R., Kenyon J. B., Goldgar D., Sujansky E., Gabow P. A. Linkage heterogeneity of autosomal dominant polycystic kidney disease. N Engl J Med. 1988 Oct 6;319(14):913–918. doi: 10.1056/NEJM198810063191405. [DOI] [PubMed] [Google Scholar]
  13. Lemas M. V., Yu H. Y., Takeyasu K., Kone B., Fambrough D. M. Assembly of Na,K-ATPase alpha-subunit isoforms with Na,K-ATPase beta-subunit isoforms and H,K-ATPase beta-subunit. J Biol Chem. 1994 Jul 15;269(28):18651–18655. [PubMed] [Google Scholar]
  14. Mangoo-Karim R., Uchic M., Lechene C., Grantham J. J. Renal epithelial cyst formation and enlargement in vitro: dependence on cAMP. Proc Natl Acad Sci U S A. 1989 Aug;86(15):6007–6011. doi: 10.1073/pnas.86.15.6007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelson W. J., Veshnock P. J. Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature. 1987 Aug 6;328(6130):533–536. doi: 10.1038/328533a0. [DOI] [PubMed] [Google Scholar]
  16. Nelson W. J., Veshnock P. J. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1986 Nov;103(5):1751–1765. doi: 10.1083/jcb.103.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orellana S. A., Sweeney W. E., Neff C. D., Avner E. D. Epidermal growth factor receptor expression is abnormal in murine polycystic kidney. Kidney Int. 1995 Feb;47(2):490–499. doi: 10.1038/ki.1995.62. [DOI] [PubMed] [Google Scholar]
  18. Peters D. J., Spruit L., Saris J. J., Ravine D., Sandkuijl L. A., Fossdal R., Boersma J., van Eijk R., Nørby S., Constantinou-Deltas C. D. Chromosome 4 localization of a second gene for autosomal dominant polycystic kidney disease. Nat Genet. 1993 Dec;5(4):359–362. doi: 10.1038/ng1293-359. [DOI] [PubMed] [Google Scholar]
  19. Reeders S. T., Breuning M. H., Davies K. E., Nicholls R. D., Jarman A. P., Higgs D. R., Pearson P. L., Weatherall D. J. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature. 1985 Oct 10;317(6037):542–544. doi: 10.1038/317542a0. [DOI] [PubMed] [Google Scholar]
  20. Shin J. M., Sachs G. Identification of a region of the H,K-ATPase alpha subunit associated with the beta subunit. J Biol Chem. 1994 Mar 25;269(12):8642–8646. [PubMed] [Google Scholar]
  21. Tanner G. A., Maxwell M. R., McAteer J. A. Fluid transport in a cultured cell model of kidney epithelial cyst enlargement. J Am Soc Nephrol. 1992 Jan;2(7):1208–1218. doi: 10.1681/ASN.V271208. [DOI] [PubMed] [Google Scholar]
  22. Trudel M., Chrétien N., D'Agati V. Disappearance of polycystic kidney disease in revertant c-myc transgenic mice. Mamm Genome. 1994 Mar;5(3):149–152. doi: 10.1007/BF00352345. [DOI] [PubMed] [Google Scholar]
  23. Trudel M., D'Agati V. A model of polycystic kidney disease in SBM transgenic mice. Contrib Nephrol. 1992;97:47–59. doi: 10.1159/000421644. [DOI] [PubMed] [Google Scholar]
  24. Trudel M., D'Agati V., Costantini F. C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int. 1991 Apr;39(4):665–671. doi: 10.1038/ki.1991.80. [DOI] [PubMed] [Google Scholar]
  25. Van Adelsberg J. S., Frank D. The PKD1 gene produces a developmentally regulated protein in mesenchyme and vasculature. Nat Med. 1995 Apr;1(4):359–364. doi: 10.1038/nm0495-359. [DOI] [PubMed] [Google Scholar]
  26. Wilson P. D. Aberrant epithelial cell growth in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1991 Jun;17(6):634–637. doi: 10.1016/s0272-6386(12)80338-6. [DOI] [PubMed] [Google Scholar]
  27. Wilson P. D., Sherwood A. C., Palla K., Du J., Watson R., Norman J. T. Reversed polarity of Na(+) -K(+) -ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. Am J Physiol. 1991 Mar;260(3 Pt 2):F420–F430. doi: 10.1152/ajprenal.1991.260.3.F420. [DOI] [PubMed] [Google Scholar]
  28. Ye M., Grantham J. J. The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med. 1993 Jul 29;329(5):310–313. doi: 10.1056/NEJM199307293290503. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES