Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1995 Dec;147(6):1799–1810.

Expression of myogenic regulatory proteins (myogenin and MyoD1) in small blue round cell tumors of childhood.

N P Wang 1, J Marx 1, M A McNutt 1, J C Rutledge 1, A M Gown 1
PMCID: PMC1869956  PMID: 7495304

Abstract

The distinction of rhabdomyosarcoma (RMS) from other small blue round cell tumors of childhood, such as Ewing's sarcoma/peripheral primitive neuroectodermal tumor (pPNET) and neuroblastoma, continues to present a diagnostic challenge to pathologists. The recent recognition of the master role of myogenic regulatory proteins in skeletal muscle commitment and differentiation, and the availability of monoclonal antibodies to two of them (myogenin and MyoD1), has prompted us to test their diagnostic utility in routinely processed, formalin-fixed, and deparaffinized tissue. Preliminary studies had demonstrated that, with the use of heat-induced epitope retrieval techniques, expression of myogenin and MyoD1 could be documented specifically in nuclei of fetal skeletal muscle by the respective antibodies. We performed a retrospective immunohistochemical analysis on 72 cases of small blue round cell tumors, including 33 RMSs, 1 metastatic myogenous Wilms' tumor, 26 Ewing's sarcomas/pPNETs, and 12 neuroblastomas. Nuclear expression of myogenin and MyoD1 were both found in 30/33 non-overlapping cases of RMS, with no significant differences in the sensitivity with respect to histological subtypes, and in 1/1 case of myogenous Wilms' tumor. None of the neuroblastomas or Ewing's sarcomas/pPNETs demonstrated positive nuclear staining with either antibody. However, most of the neuroblastomas, and occasional Ewing's sarcomas/pPNETs, showed variable fibrillary, cytoplasmic immunoreactivity with antibody to MyoD1. We conclude that, with the use of microwave-based epitope retrieval, antibodies to myogenin and MyoD1 are both useful markers for the identification of RMS among other small blue round cell tumors of childhood, but antibodies to myogenin have technical advantages over those to MyoD1, as the latter may cross-react with an unknown cytoplasmic antigen in non-muscle cells and tumors.

Full text

PDF
1799

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmannsberger M., Weber K., Droste R., Osborn M. Desmin is a specific marker for rhabdomyosarcomas of human and rat origin. Am J Pathol. 1985 Jan;118(1):85–95. [PMC free article] [PubMed] [Google Scholar]
  2. Auradé F., Pinset C., Chafey P., Gros F., Montarras D. Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype. Differentiation. 1994 Feb;55(3):185–192. doi: 10.1046/j.1432-0436.1994.5530185.x. [DOI] [PubMed] [Google Scholar]
  3. Bober E., Lyons G. E., Braun T., Cossu G., Buckingham M., Arnold H. H. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol. 1991 Jun;113(6):1255–1265. doi: 10.1083/jcb.113.6.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun T., Rudnicki M. A., Arnold H. H., Jaenisch R. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell. 1992 Oct 30;71(3):369–382. doi: 10.1016/0092-8674(92)90507-9. [DOI] [PubMed] [Google Scholar]
  5. Buckingham M. Making muscle in mammals. Trends Genet. 1992 Apr;8(4):144–148. doi: 10.1016/0168-9525(92)90373-C. [DOI] [PubMed] [Google Scholar]
  6. Buckingham M. Molecular biology of muscle development. Cell. 1994 Jul 15;78(1):15–21. doi: 10.1016/0092-8674(94)90568-1. [DOI] [PubMed] [Google Scholar]
  7. Carter R. L., Hall J. M. A note on immunohistochemical staining for sarcomeric actin in rhabdomyosarcomas and other round cell tumours. Histopathology. 1992 Dec;21(6):575–577. doi: 10.1111/j.1365-2559.1992.tb00447.x. [DOI] [PubMed] [Google Scholar]
  8. Carter R. L., Jameson C. F., Philp E. R., Pinkerton C. R. Comparative phenotypes in rhabdomyosarcomas and developing skeletal muscle. Histopathology. 1990 Oct;17(4):301–309. doi: 10.1111/j.1365-2559.1990.tb00733.x. [DOI] [PubMed] [Google Scholar]
  9. Cavazzana A. O., Schmidt D., Ninfo V., Harms D., Tollot M., Carli M., Treuner J., Betto R., Salviati G. Spindle cell rhabdomyosarcoma. A prognostically favorable variant of rhabdomyosarcoma. Am J Surg Pathol. 1992 Mar;16(3):229–235. doi: 10.1097/00000478-199203000-00002. [DOI] [PubMed] [Google Scholar]
  10. Davis R. L., Cheng P. F., Lassar A. B., Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990 Mar 9;60(5):733–746. doi: 10.1016/0092-8674(90)90088-v. [DOI] [PubMed] [Google Scholar]
  11. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  12. Dias P., Dilling M., Houghton P. The molecular basis of skeletal muscle differentiation. Semin Diagn Pathol. 1994 Feb;11(1):3–14. [PubMed] [Google Scholar]
  13. Dias P., Parham D. M., Shapiro D. N., Tapscott S. J., Houghton P. J. Monoclonal antibodies to the myogenic regulatory protein MyoD1: epitope mapping and diagnostic utility. Cancer Res. 1992 Dec 1;52(23):6431–6439. [PubMed] [Google Scholar]
  14. Dias P., Parham D. M., Shapiro D. N., Webber B. L., Houghton P. J. Myogenic regulatory protein (MyoD1) expression in childhood solid tumors: diagnostic utility in rhabdomyosarcoma. Am J Pathol. 1990 Dec;137(6):1283–1291. [PMC free article] [PubMed] [Google Scholar]
  15. Eusebi V., Bondi A., Rosai J. Immunohistochemical localization of myoglobin in nonmuscular cells. Am J Surg Pathol. 1984 Jan;8(1):51–55. doi: 10.1097/00000478-198401000-00005. [DOI] [PubMed] [Google Scholar]
  16. Funk W. D., Ouellette M., Wright W. E. Molecular biology of myogenic regulatory factors. Mol Biol Med. 1991 Apr;8(2):185–195. [PubMed] [Google Scholar]
  17. Gown A. M., Vogel A. M. Monoclonal antibodies to human intermediate filament proteins. II. Distribution of filament proteins in normal human tissues. Am J Pathol. 1984 Feb;114(2):309–321. [PMC free article] [PubMed] [Google Scholar]
  18. Hasty P., Bradley A., Morris J. H., Edmondson D. G., Venuti J. M., Olson E. N., Klein W. H. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993 Aug 5;364(6437):501–506. doi: 10.1038/364501a0. [DOI] [PubMed] [Google Scholar]
  19. Hinterberger T. J., Sassoon D. A., Rhodes S. J., Konieczny S. F. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol. 1991 Sep;147(1):144–156. doi: 10.1016/s0012-1606(05)80014-4. [DOI] [PubMed] [Google Scholar]
  20. Hurlimann J. Desmin and neural marker expression in mesothelial cells and mesotheliomas. Hum Pathol. 1994 Aug;25(8):753–757. doi: 10.1016/0046-8177(94)90243-7. [DOI] [PubMed] [Google Scholar]
  21. Leader M., Collins M., Patel J., Henry K. Desmin: its value as a marker of muscle derived tumours using a commercial antibody. Virchows Arch A Pathol Anat Histopathol. 1987;411(4):345–349. doi: 10.1007/BF00713379. [DOI] [PubMed] [Google Scholar]
  22. Leuschner I., Newton W. A., Jr, Schmidt D., Sachs N., Asmar L., Hamoudi A., Harms D., Maurer H. M. Spindle cell variants of embryonal rhabdomyosarcoma in the paratesticular region. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol. 1993 Mar;17(3):221–230. doi: 10.1097/00000478-199303000-00002. [DOI] [PubMed] [Google Scholar]
  23. Lollini P. L., De Giovanni C., Del Re B., Landuzzi L., Nicoletti G., Prodi G., Scotlandi K., Nanni P. Myogenic differentiation of human rhabdomyosarcoma cells induced in vitro by antineoplastic drugs. Cancer Res. 1989 Jul 1;49(13):3631–3636. [PubMed] [Google Scholar]
  24. Miettinen M., Rapola J. Immunohistochemical spectrum of rhabdomyosarcoma and rhabdomyosarcoma-like tumors. Expression of cytokeratin and the 68-kD neurofilament protein. Am J Surg Pathol. 1989 Feb;13(2):120–132. doi: 10.1097/00000478-198902000-00005. [DOI] [PubMed] [Google Scholar]
  25. Molenaar W. M., Oosterhuis J. W., Kamps W. A. Cytologic "differentiation" in childhood rhabdomyosarcomas following polychemotherapy. Hum Pathol. 1984 Oct;15(10):973–979. doi: 10.1016/s0046-8177(84)80127-6. [DOI] [PubMed] [Google Scholar]
  26. Montarras D., Chelly J., Bober E., Arnold H., Ott M. O., Gros F., Pinset C. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biol. 1991 Jun;3(6):592–600. [PubMed] [Google Scholar]
  27. Nabeshima Y., Hanaoka K., Hayasaka M., Esumi E., Li S., Nonaka I., Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993 Aug 5;364(6437):532–535. doi: 10.1038/364532a0. [DOI] [PubMed] [Google Scholar]
  28. Ott M. O., Bober E., Lyons G., Arnold H., Buckingham M. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development. 1991 Apr;111(4):1097–1107. doi: 10.1242/dev.111.4.1097. [DOI] [PubMed] [Google Scholar]
  29. Parham D. M., Dias P., Kelly D. R., Rutledge J. C., Houghton P. Desmin positivity in primitive neuroectodermal tumors of childhood. Am J Surg Pathol. 1992 May;16(5):483–492. doi: 10.1097/00000478-199205000-00007. [DOI] [PubMed] [Google Scholar]
  30. Parham D. M., Webber B., Holt H., Williams W. K., Maurer H. Immunohistochemical study of childhood rhabdomyosarcomas and related neoplasms. Results of an Intergroup Rhabdomyosarcoma study project. Cancer. 1991 Jun 15;67(12):3072–3080. doi: 10.1002/1097-0142(19910615)67:12<3072::aid-cncr2820671223>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  31. Rangdaeng S., Truong L. D. Comparative immunohistochemical staining for desmin and muscle-specific actin. A study of 576 cases. Am J Clin Pathol. 1991 Jul;96(1):32–45. doi: 10.1093/ajcp/96.1.32. [DOI] [PubMed] [Google Scholar]
  32. Rudnicki M. A., Braun T., Hinuma S., Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 1992 Oct 30;71(3):383–390. doi: 10.1016/0092-8674(92)90508-a. [DOI] [PubMed] [Google Scholar]
  33. Sassoon D. A. Myogenic regulatory factors: dissecting their role and regulation during vertebrate embryogenesis. Dev Biol. 1993 Mar;156(1):11–23. doi: 10.1006/dbio.1993.1055. [DOI] [PubMed] [Google Scholar]
  34. Schmidt R. A., Cone R., Haas J. E., Gown A. M. Diagnosis of rhabdomyosarcomas with HHF35, a monoclonal antibody directed against muscle actins. Am J Pathol. 1988 Apr;131(1):19–28. [PMC free article] [PubMed] [Google Scholar]
  35. Scrable H., Witte D., Shimada H., Seemayer T., Sheng W. W., Soukup S., Koufos A., Houghton P., Lampkin B., Cavenee W. Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer. 1989 Sep;1(1):23–35. doi: 10.1002/gcc.2870010106. [DOI] [PubMed] [Google Scholar]
  36. Scupham R., Gilbert E. F., Wilde J., Wiedrich T. A. Immunohistochemical studies of rhabdomyosarcoma. Arch Pathol Lab Med. 1986 Sep;110(9):818–821. [PubMed] [Google Scholar]
  37. Tallini G., Parham D. M., Dias P., Cordon-Cardo C., Houghton P. J., Rosai J. Myogenic regulatory protein expression in adult soft tissue sarcomas. A sensitive and specific marker of skeletal muscle differentiation. Am J Pathol. 1994 Apr;144(4):693–701. [PMC free article] [PubMed] [Google Scholar]
  38. Tapscott S. J., Davis R. L., Thayer M. J., Cheng P. F., Weintraub H., Lassar A. B. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988 Oct 21;242(4877):405–411. doi: 10.1126/science.3175662. [DOI] [PubMed] [Google Scholar]
  39. Tonin P. N., Scrable H., Shimada H., Cavenee W. K. Muscle-specific gene expression in rhabdomyosarcomas and stages of human fetal skeletal muscle development. Cancer Res. 1991 Oct 1;51(19):5100–5106. [PubMed] [Google Scholar]
  40. Tsokos M. The diagnosis and classification of childhood rhabdomyosarcoma. Semin Diagn Pathol. 1994 Feb;11(1):26–38. [PubMed] [Google Scholar]
  41. Tsokos M. The role of immunocytochemistry in the diagnosis of rhabdomyosarcoma. Arch Pathol Lab Med. 1986 Sep;110(9):776–778. [PubMed] [Google Scholar]
  42. Tsokos M., Webber B. L., Parham D. M., Wesley R. A., Miser A., Miser J. S., Etcubanas E., Kinsella T., Grayson J., Glatstein E. Rhabdomyosarcoma. A new classification scheme related to prognosis. Arch Pathol Lab Med. 1992 Aug;116(8):847–855. [PubMed] [Google Scholar]
  43. Weidner N., Tjoe J. Immunohistochemical profile of monoclonal antibody O13: antibody that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing's sarcoma and peripheral neuroepithelioma. Am J Surg Pathol. 1994 May;18(5):486–494. [PubMed] [Google Scholar]
  44. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  45. Weintraub H., Tapscott S. J., Davis R. L., Thayer M. J., Adam M. A., Lassar A. B., Miller A. D. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5434–5438. doi: 10.1073/pnas.86.14.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wesche W. A., Fletcher C. D., Dias P., Houghton P. J., Parham D. M. Immunohistochemistry of MyoD1 in adult pleomorphic soft tissue sarcomas. Am J Surg Pathol. 1995 Mar;19(3):261–269. doi: 10.1097/00000478-199503000-00003. [DOI] [PubMed] [Google Scholar]
  47. Wright W. E., Binder M., Funk W. Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol. 1991 Aug;11(8):4104–4110. doi: 10.1128/mcb.11.8.4104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wright W. E. Muscle basic helix-loop-helix proteins and the regulation of myogenesis. Curr Opin Genet Dev. 1992 Apr;2(2):243–248. doi: 10.1016/s0959-437x(05)80280-1. [DOI] [PubMed] [Google Scholar]
  49. Zeng L., Fleury-Feith J., Monnet I., Boutin C., Bignon J., Jaurand M. C. Immunocytochemical characterization of cell lines from human malignant mesothelioma: characterization of human mesothelioma cell lines by immunocytochemistry with a panel of monoclonal antibodies. Hum Pathol. 1994 Mar;25(3):227–234. doi: 10.1016/0046-8177(94)90192-9. [DOI] [PubMed] [Google Scholar]
  50. de Jong A. S., van Kessel-van Vark M., Albus-Lutter C. E. Pleomorphic rhabdomyosarcoma in adults: immunohistochemistry as a tool for its diagnosis. Hum Pathol. 1987 Mar;18(3):298–303. doi: 10.1016/s0046-8177(87)80013-8. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES