Abstract
The effect of water potential on the growth of two strains of Thiobacillus ferroxidans was determined by adding defined amounts of sodium chloride or glycerol to the culture medium. The two strains differed slightly, and the most tolerant strain had a minimum water potential for growth of -15 to -32 bars when sodium chloride was used and -6 bars when glycerol was used. In another approach, the limiting water potential was determined by equilibrating small amounts of culture medium with atmospheres of relative humidities equivalent to specific water potentials, and the ability of the organism to grow and oxidize ferrous iron was determined. Under these conditions, which are analogous to those which might control water potential in a coal refuse pile or copper leaching dump, the lower limit at which iron oxidation occurred was -23 bars. The water potential of some coal refuse materials in which T. ferrooxidans was present were determined, and it was found that the water potentials at which the organism was active in these habitats were similar to those at which it was able to grow in culture. However, marked variation in water potential of coal refuse materials was found, presumably due to differences in clays and organic materials, and some coal refuse materials would probably never have water potentials at which the organism could grow. Some literature on the water potentials in copper leach dumps is reviewed, and it is concluded that control of water potential is essential to maximize the success of leaching operations. Because adequate drainage is necessary in a leach dump to ensure sufficient aeration, in many cases water availability in leach dumps may restrict the development of the bacterium necessary for the process.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belly R. T., Brock T. D. Ecology of iron-oxidizing bacteria in pyritic materials associated with coal. J Bacteriol. 1974 Feb;117(2):726–732. doi: 10.1128/jb.117.2.726-732.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin D. M. Soil moisture and the ecology of soil fungi. Biol Rev Camb Philos Soc. 1963 May;38(2):141–166. doi: 10.1111/j.1469-185x.1963.tb00781.x. [DOI] [PubMed] [Google Scholar]
- Harris R. F., Gardner W. R., Adebayo A. A., Sommers L. E. Agar dish isopiestic equilibration method for controlling the water potential of solid substrates. Appl Microbiol. 1970 Mar;19(3):536–537. doi: 10.1128/am.19.3.536-537.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SILVERMAN M. P., LUNDGREN D. G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol. 1959 May;77(5):642–647. doi: 10.1128/jb.77.5.642-647.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]