Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1975 May;29(5):604–609. doi: 10.1128/am.29.5.604-609.1975

Extracellular Lipids of Cladosporium (Amorphotheca) resinae Growth on Glucose or on n-Alkanes

C Siporin 1, J J Cooney 1
PMCID: PMC187044  PMID: 238469

Abstract

Cladosporium (Amorphotheca) resinae was grown in shake culture on glucose, n-dodecane, or n-hexadecane. Growth was most rapid on glucose, and more acid accumulated in the medium than in n-alkane-grown cultures. Neutral lipid was the major lipid fraction and triglycerides were the only extracellular neutral lipids detected. Dodecanoic (lauric) acid was the predominant fatty acid (>60%) in neutral lipids from all three media, with lesser amounts of tetradecanoic, hexadecanoic, and octadecanoic acids. Extracellular phospholipids identified were phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and cardiolipin or a cardiolipin-like compound. Phospholipids from all three media contained dodecanoic acid as their principle fatty acid. Dodecanoic acid was the only extracellular free fatty acid detected. Glucose medium contained acetic, glyoxylic, and glycolic acids and an unidentified organic acid which may contribute to the lower pH in cultures after growth on glucose. In all classes of extracellular lipids the fatty acids do not correspond to the fatty acids previously determined to be associated with cellular lipids. Moreover, the fatty acids of extracellular lipids do not reflect the chain length of the n-alkane growth substrate.

Full text

PDF
604

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas R. M., Bartha R. Inhibition by fatty acids of the biodegradation of petroleum. Antonie Van Leeuwenhoek. 1973;39(2):257–271. doi: 10.1007/BF02578858. [DOI] [PubMed] [Google Scholar]
  2. Beam H. W., Perry J. J. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol. 1974 May;118(2):394–399. doi: 10.1128/jb.118.2.394-399.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bird C. W., Molton P. The biochemical status of metabolites of alkane-utilizing Pseudomonas organisms. Biochem J. 1969 Oct;114(4):881–884. doi: 10.1042/bj1140881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bushnell L. D., Haas H. F. The Utilization of Certain Hydrocarbons by Microorganisms. J Bacteriol. 1941 May;41(5):653–673. doi: 10.1128/jb.41.5.653-673.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerniglia C. E., Perry J. J. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing filamentous fungi. J Bacteriol. 1974 Jun;118(3):844–847. doi: 10.1128/jb.118.3.844-847.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooney J. J., Proby C. M. Fatty acid composition of Cladosporium resinae grown on glucose and on hydrocarbons. J Bacteriol. 1971 Nov;108(2):777–781. doi: 10.1128/jb.108.2.777-781.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunlap K. R., Perry J. J. Effect of Substrate on the Fatty Acid Composition of Hydrocarbon- and Ketone-utilizing Microorganisms. J Bacteriol. 1968 Aug;96(2):318–321. doi: 10.1128/jb.96.2.318-321.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms. J Bacteriol. 1967 Dec;94(6):1919–1923. doi: 10.1128/jb.94.6.1919-1923.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edmonds P., Cooney J. J. Identification of microorganisms isolated from jet fuel systems. Appl Microbiol. 1967 Mar;15(2):411–416. doi: 10.1128/am.15.2.411-416.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fredricks K. M. Products of the oxidation of n-decane by Pseudomonas aeruginosa and Mycobacterium rhodochrous. Antonie Van Leeuwenhoek. 1967;33(1):41–48. doi: 10.1007/BF02045532. [DOI] [PubMed] [Google Scholar]
  12. Galbraith H., Miller T. B., Paton A. M., Thompson J. K. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol. 1971 Dec;34(4):803–813. doi: 10.1111/j.1365-2672.1971.tb01019.x. [DOI] [PubMed] [Google Scholar]
  13. Hug H., Fiechter A. Assimilation of aliphatic hydrocarbons by Candida tropicalis. II. Fatty acid profiles from cells grown on substrates of different chain length. Arch Mikrobiol. 1973;88(2):87–96. [PubMed] [Google Scholar]
  14. Iizuka H., Lin H. T., Iida M. Ester formation from n-alkanes by fungi isolated from aircraft fuel. Z Allg Mikrobiol. 1970;10(3):189–196. [PubMed] [Google Scholar]
  15. Klug M. J., Markovetz A. J. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica. J Bacteriol. 1967 Jun;93(6):1847–1852. doi: 10.1128/jb.93.6.1847-1852.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MORRISON W. R., SMITH L. M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J Lipid Res. 1964 Oct;5:600–608. [PubMed] [Google Scholar]
  17. Makula R. A., Finnerty W. R. Microbial assimilation of hydrocarbons: identification of phospholipids. J Bacteriol. 1970 Aug;103(2):348–355. doi: 10.1128/jb.103.2.348-355.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Makula R., Finnerty W. R. Microbial assimilation of hydrocarbons. I. Fatty acids derived from normal alkanes. J Bacteriol. 1968 Jun;95(6):2102–2107. doi: 10.1128/jb.95.6.2102-2107.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NIEMAN C. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev. 1954 Jun;18(2):147–163. doi: 10.1128/br.18.2.147-163.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STEWART J. E., KALLIO R. E. Bacterial hydrocarbon oxidation. II. Ester formation from alkanes. J Bacteriol. 1959 Nov;78:726–730. doi: 10.1128/jb.78.5.726-730.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walker J. D., Cooney J. J. Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl Microbiol. 1973 Nov;26(5):705–708. doi: 10.1128/am.26.5.705-708.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. White D. C., Frerman F. E. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol. 1967 Dec;94(6):1854–1867. doi: 10.1128/jb.94.6.1854-1867.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES