Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1975 Jun;29(6):739–744. doi: 10.1128/am.29.6.739-744.1975

Comparison of the Survival and Metabolic Activity of Psychrophilic and Mesophilic Yeasts Subjected to Freeze-Thaw Stress

Edward D Meyer 1, Norval A Sinclair 1, Bartholomew Nagy 1
PMCID: PMC187072  PMID: 1171652

Abstract

A mesophilic yeast, Candida utilis, and a psychrophilic yeast, Leucosporidium stokesii, were subjected to freeze-thaw cycling over the range 25 to -60 C. Viability after freeze-thaw stress was directly correlated with the rate of cooling and the physiological age of the cultures. Rates of glucose fermentation and oxidation could be directly correlated with viability. The optimal cooling rate for both yeast strains was 4.5 to 6.5 C/min; however, their levels of survival obtained at this optimal cooling rate varied considerably. In addition, the psychrophile was less resistant to freeze-thaw stress than was the mesophile.

Full text

PDF
739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURNS M. E. CRYOBIOLOGY AS VIEWED BY THE MICROBIOLOGIST. Cryobiology. 1964 Sep-Oct;51:18–39. doi: 10.1016/0011-2240(64)90017-3. [DOI] [PubMed] [Google Scholar]
  2. Curtis C. R. Response of fungi to diurnal temperature extremes. Nature. 1967 Feb 18;213(5077):738–739. doi: 10.1038/213738a0. [DOI] [PubMed] [Google Scholar]
  3. Fell J. W., Statzell A. C., Hunter I. L., Phaff H. J. Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie Van Leeuwenhoek. 1969;35(4):433–462. [PubMed] [Google Scholar]
  4. Green R. H., Taylor D. M., Gustan E. A., Fraser S. J., Olson R. L. Survival of microorganisms in a simulated Martian environment. Space Life Sci. 1971 Aug;3(1):12–24. doi: 10.1007/BF00924210. [DOI] [PubMed] [Google Scholar]
  5. HANSEN I. A., NOSSAL P. M. Morphological and biochemical effects of freezing on yeast cells. Biochim Biophys Acta. 1955 Apr;16(4):502–512. doi: 10.1016/0006-3002(55)90270-5. [DOI] [PubMed] [Google Scholar]
  6. Larkin J. M., Stokes J. L. Growth of psychrophilic microphilic microorganisms at subzero temperatures. Can J Microbiol. 1968 Feb;14(2):97–101. doi: 10.1139/m68-017. [DOI] [PubMed] [Google Scholar]
  7. MAZUR P. Physical and temporal factors involved in the death of yeast at subzero temperatures. Biophys J. 1961 Jan;1:247–264. doi: 10.1016/s0006-3495(61)86887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mazur P., Schmidt J. J. Interactions of cooling velocity, temperature, and warming velocity on the survival of frozen and thawed yeast. Cryobiology. 1968 Jul-Aug;5(1):1–17. doi: 10.1016/s0011-2240(68)80138-5. [DOI] [PubMed] [Google Scholar]
  9. Müller I. Experiments on ageing in single cells of Saccharomyces cerevisiae. Arch Mikrobiol. 1971;77(1):20–25. doi: 10.1007/BF00407985. [DOI] [PubMed] [Google Scholar]
  10. SINCLAIR N. A., STOKES J. L. OBLIGATELY PSYCHROPHILIC YEASTS FROM THE POLAR REGIONS. Can J Microbiol. 1965 Apr;11:259–269. doi: 10.1139/m65-032. [DOI] [PubMed] [Google Scholar]
  11. Siegel S. M., Speitel T., Stoecker R. Life in earth extreme environments: a study of cryobiotic potentialities. Cryobiology. 1969 Nov-Dec;6(3):160–181. doi: 10.1016/s0011-2240(69)80346-9. [DOI] [PubMed] [Google Scholar]
  12. YOUNG R. S., DEAL P., BELL J., ALLEN J. EFFECT OF DIURNAL FREEZE-THAWING ON SURVIVAL AND GROWTH OF SELECTED BACTERIA. Nature. 1963 Sep 14;199:1078–1079. doi: 10.1038/1991078a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES